国内航空工业疲劳与结构完整性研究进展与展望(航空疲劳与结构完整性专刊)

  • 王彬文 ,
  • 陈先民
展开
  • 中国飞机强度研究所

收稿日期: 2020-08-18

  修回日期: 2021-02-18

  网络出版日期: 2021-02-18

Research progress and prospect of fatigue and structural integrity for aer-onautical industry in China

  • WANG Bin-Wen ,
  • CHEN Xian-Min
Expand

Received date: 2020-08-18

  Revised date: 2021-02-18

  Online published: 2021-02-18

摘要

航空疲劳是影响飞机结构安全性、可靠性的关键问题之一,尽管已经过多年的研究,但随着航空技术的提高、设计理念的发展以及新技术的应用等,在原有遗留问题的基础上又出现了许多问题亟待解决。本文从航空疲劳的内涵出发,梳理了我国航空疲劳研究的思想脉络和主要成果,重点对进入二十一世纪以来国内航空疲劳在材料/结构/工艺、分析评估方法、疲劳试验技术以及服役寿命管理等方面的研究现状进行了较为系统的总结,并结合航空实践对相关研究的工程应用进行了简要介绍,在此基础上提出了一些国内航空疲劳研究需要重点关注的方向,以期为我国航空疲劳研究的进一步发展提供借鉴和支持。

本文引用格式

王彬文 , 陈先民 . 国内航空工业疲劳与结构完整性研究进展与展望(航空疲劳与结构完整性专刊)[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2021.24651

Abstract

In China, as the improvement of aeronautical industry, fatigue and structural integrity become one of the key problems that affect the life, safety and reliability of aircraft structures. After years of hard-working, aircraft design philosophy evolved gradually from static strength to safe-life, and now to fatigue and structural integrity as a guide. Aircraft structural integrity program has been implemented successfully into structural development for several new types. The service life, reliability and economy of the new generation aircraft structure have been improved significantly. However, with the improvement of aeronautical technology and the development requirements for new aircrafts, many new problems emerged in this area. From the perspective of aeronautical industry, this paper combs the progress and main achievements of aeronautical fatigue research in China, and focuses on the research status and engineering applications in the aspects of material/structure/process, analysis and evaluation method, fatigue test technology and service life management since 2000. Finally, some aeronautical fatigue research directions need to be focused on were proposed in order to provide reference for the further development of domestic aeronautical structures.

参考文献

[1] MIL-STD-008867B, Airplane Strength and Rigidity Ground Tests, August 1975.
[2] MANNING S D, YANG J N, SHINOZUKA M, et al. Durability methods development, Volume I-Phase I summary air force flight dynamics Lab., AFFDL-TR-79-3118, September 1979.
[3] MANNING S D, YANG J N, SHINOZUKA M, et al. Durability methods development, Volume II-Durability analysis: State-of-the-art assessment Air Force Flight Dynamics Lab., AFFDL-TR-79-3118, September 1979.
[4] Manning S D, Yang J N. 美国空军耐久性设计手册(第一版)[M]. 航空航天工业部《AFFD》系统工程译, 1991.
Translated by Institute of science and technology, Minis-try of aerospace industry. U.S. Air Force damage toler-ance design manual [M]. Xi'an: Northwestern Polytechnic University Press, 1989(in Chinese).
[5] 航空航天工业部科学技术研究院译. 美国空军损伤限设计手册[M]. 西安: 西北工业大学出版社, 1989.
Translated by Institute of science and technology, Minis-try of aerospace industry. U.S. Air Force damage toler-ance design manual [M]. Xi'an: Northwestern Polytechnic University Press, 1989(in Chinese).
[6] 高镇同. 疲劳应用统计学[M]. 北京: 国防工业出版社, 1986.
GAO Z T. Applied statistics of fatigue [M]. Beijing: Na-tional Defense Industry Press, 1986(in Chinese).
[7] Provan J W. 概率断裂力学和可靠性[M]. 北京: 航空工业出版社, 1989.
Provan J W. Fracture probability of Aviation Industry Press, 1989(in Chinese).
[8] 张俊华. 结构强度可靠性设计指南(金属结构部分)[M]. 北京: 宇航出版社, 1994.
ZHANG J H. Structural strength reliability design guide (metal structure part) [M]. Beijing: Aerospace Press, 1994(in Chinese).
[9] 王俊扬, 郑旻仲. 为新型飞机研制提供《AFFD》技术[J]. 航空学报, 1989, 10(12):B565-B569.
ZHANG J H. Structural strength reliability design guide (metal structure part) [M]. Beijing: Aerospace Press, 1994(in Chinese).
[10] 王俊扬. 《AFFD》系统工程“八五”主要研究任务和目标[J]. DOI: CNKI:SUN:HKXB.0.1991-02-000.
WANG J Y. Main research tasks and objectives of AFFD system engineering in the eighth five year plan [J]. Doi: CNKI: Sun: hkxb. 0.1991-02-000(in Chinese).
[11] 董登科. 现代飞机结构灾难性疲劳破坏预测与控制技术研究[D]. 南京: 南京航空航天大学, 2000.
DONG D K. Research on prediction and control of cata-strophic fatigue failure of modern aircraft structures [D]. Nanjing: Nanjing University of Aeronautics and Astro-nautics, 2000(in Chinese).
[12] 潘龙社. 谈谈飞机结构的抗疲劳细节设计[J]. 中国新技术新产品, 2014, 1:136-137.
PAN L S. On the anti-fatigue detail design of aircraft structure [J]. China new technology and new products, 2014, 1:136-137(in Chinese).
[13] 尹登峰, 郑子樵. 铝锂合金研究开发的历史与现状[J]. 材料导报, 2003, 2:18-20.
YIN D F, ZHENG Z Q. History and present situation of research and development of Al Li alloys [J]. Materials guide, 2003, 2:18-20(in Chinese).
[14] 李红萍, 叶凌英, 邓运来, 等. 航空铝锂合金研究进展[J]. 中国材料进展, 2016, 35(11):856-862.
LI H P, YE L Y, DENG Y L, et al. Research progress of aviation aluminum lithium alloys [J]. China Materials progress, 2016, 35 (11): 856-862(in Chinese).
[15] 陈圆圆, 郑子樵, 蔡彪, 等. 2197(Al-Li)-T851合金的疲劳裂纹萌生于扩展行为研究[J]. 稀有金属材料与工程, 2011, 40(11): 1926-1930.
CHEN Y Y, ZHENG Z Q, Cai B, et al. Fatigue crack ini-tiation and propagation behavior of 2197 (Al Li) - t851 alloy [J]. Rare metal materials and engineering, 2011, 40 (11): 1926-1930(in Chinese).
[16] 谢长生. 人类文明的基石-材料科学技术[M]. 武汉: 华中理工大学出版社, 2000.
XIE C S. Materials science and technology, the corner-stone of human civilization [M]. Wuhan: Huazhong University of science and Technology Press, 2000(in Chinese).
[17] 许罗鹏, 曹小建, 李久楷, 等. 铝锂合金2198-T8高周疲劳性能及其裂纹萌生机理[J]. 稀有金属材料与工程, 2017, 46(1): 83-89.
XU L P, CAO X J, LI J K, et al. High cycle fatigue prop-erties and crack initiation mechanism of aluminum lithium alloy 2198-t8 [J]. Rare metal materials and engineering, 2017, 46 (1): 83-89(in Chinese).
[18] 张庆友. 喷射成形2195铝锂合金微观组织演变及低周疲劳行为研究[J]. 济南: 山东大学, 2019.
ZHANG Q Y. Microstructure evolution and low cycle fatigue behavior of spray formed 2195 Al Li alloy [J]. Jinan: Shandong University, 2019(in Chinese).
[19] 王俭堂. 2297-T87铝锂合金厚板各向异性和疲劳性能研究[J]. 长沙: 湖南大学, 2018.
WANG J T. Anisotropy and fatigue properties of 2297-t87 aluminum lithium alloy thick plate [J]. Changsha: Hunan University, 2018(in Chinese).
[20] Wu Wenting, Liu Zhiyi, Bai Song. Anisotropy in fatigue crack propagation behavior of Al-Cu-Li alloy thick plate[J]. Materials Characterization, 2017, 131.
[21] 苏运来, 常文魁, 陈先民, 等. 喷丸强化对Al-Li-XX和2XXX铝锂合金疲劳性能影响[J]. 科学技术与工程, 2020, 26:1-7.
SU Y L, CHANG W K, CHEN X M, et al. Effect of shot peening on fatigue properties of Al Li XX and 2XXX Al Li alloys [J]. Science, technology and engineering, 2020, 26:1-7(in Chinese).
[22] 陈安, 许飞, 闫文伟, 等. 基于DFR法的Al-Li-S4铝锂合金铆接结构疲劳可靠性分析[J]. 航空工程进展, 2016, 7(1):101-105.
CHEN A, XU F, YAN W W, et al. Fatigue reliability analysis of al-li-s4 aluminum lithium alloy riveted struc-ture based on DFR method [J]. Aviation engineering progress, 2016, 7 (1): 101-105(in Chinese).
[23] 徐一新. 中航空业洪都交付C919机身等直段部段[N]. 中国航空报, 2010-12-04.
XU Y X. AVIC Hong du delivers C919 fuselage straight section [N]. China Aviation News, 2010-12-04(in Chi-nese).
[24] 马玉娥, 王博, 熊晓枫. 玻璃纤维铝合金层板(FMLs)的疲劳损伤特性及S-N曲线[J]. 西北工业大学学报, 2016, 34(2):222-226.
MA Y E, WANG B, XIONG X F. Fatigue damage char-acteristics and S-N curve of glass fiber reinforced alumi-num alloy laminates [J]. Journal of Northwest Polytechnic University, 2016, 34 (2): 222-226(in Chinese).
[25] 田精明. GLARE层板铆接工艺及对疲劳寿命影响研究[M]. 南京: 南京航空航天大学, 2018.
TIAN J S. Study on the riveting process of glare lami-nates and its effect on fatigue life [M]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese).
[26] Bai S G, Zhang J Z, Sha Y. Finite element analysis of near the fatigue crack tip parameters in the glass fiber re-inforced aluminum alloy laminates under tension-compression loading[J]. Fiber & Polymer Composites, 2013, 21(9): 553-558.
[27] 张嘉振, 白士刚, 周振功. 拉-压加载下纤维增强铝合金层合板疲劳裂纹扩展的压载荷效应与预测模型[J]. 复合材料学报, 2012, 29(4):163-169.
ZHANG J Z, BAI S G, ZHOU Z G. Compressive load effect and prediction model of fatigue crack growth of fiber reinforced aluminum alloy laminates under tension compression loading [J]. Acta composite materials, 2012, 29 (4): 163-169(in Chinese).
[28] 崔海超, 熊磊, 马宏毅, 等. 玻璃纤维-铝合金层合板湿热老化性能研究[J]. 玻璃钢/复合材料, 2017, 10:89-93.
CUI H C, XIONG L, MA H Y, et al. Study on hygro-thermal aging properties of glass fiber aluminum alloy laminates [J]. FRP composite, 2017, 10:89-93(in Chi-nese).
[29] PETTIT R G, WANG J J, TOH C. Validated feasibility study of integral stiffened metallic fuselage panels for reducing manufacturing costs[M]. NASA Langley Re-search Center, 2000.
[30] 董亚南. 铝合金整体壁板多点对压成形的裂纹预测与控制[D]. 长春: 吉林大学, 2016.
DONG Y N. Crack prediction and control of aluminum alloy integral panel during multi-point press forming [D]. Changchun: Jilin University, 2016(in Chinese).
[31] POE CC. Fatigue crack propagation in stiffened panels[J]. ASTM STP, 1971, 486:79-97.
[32] 李亚智, 张向. 整体加筋壁板的破损安全特性与断裂控制分析[J]. 航空学报, 2006, 27(5): 842-846.
LI Y Z, ZHANG X. Damage safety characteristics and fracture control analysis of integral stiffened panel [J]. Acta Aeronautica Sinica, 2006, 27 (5): 842-846(in Chinese).
[33] 杨翔宁, 许希武, 郭树翔. 典型加筋板结构面内裂纹偏转与扩展行为分析[J]. 哈尔滨工业大学学报, 2017, 49(4):42-47.
YANG X N, XU X W, GUO S XI. Analysis of in-plane crack deflection and propagation behavior of typical stiffened plates [J]. Journal of Harbin Institute of tech-nology, 2017, 49 (4): 42-47(in Chinese).
[34] 张博平, 郭小华, 史仁义, 等. 带止裂筋整体翼梁结构的破损安全分析与试验[J]. 航空工程进展, 2014, 5(1):53-58.
ZHANG B P, GUO X H, Shi R y, et al. Damage safety analysis and test of integral wing beam structure with crack arrest bars [J]. Aviation engineering progress, 2014, 5 (1): 53-58(in Chinese).
[35] 闫晓中, 王生楠, 苏毅. 整体壁板三维裂纹应力强度因子计算与分析[J]. 航空工程进展, 2011, 2(2):205-209.
YAN X Z, WANG S N, SU Y. Calculation and analysis of stress intensity factors for three dimensional cracks in integral panels [J]. Progress in Aeronautical Engineering, 2011, 2 (2): 205-209(in Chinese).
[36] 陈安, 魏玉龙, 廖江海, 等. 机身加筋壁板复合加载损伤容限性能试验[J]. 航空学报, 2017, 38(1):420093.
CHEN A, WEI Y L, LIAO J H, et al. Damage tolerance test of fuselage stiffened panel under combined loading [J]. Acta Aeronautica et Astronautica Sinica, 2017, 38 (1): 420093(in Chinese).
[37] 阳波, 苟文博, 赖丽珍, 等. 大型整体壁板展开技术研究[J]. 机械制造, 55(629):66-68.
YANG B, GOU W B, LAI L Z, et al. Development tech-nology of large integral panel [J]. Mechanical manufac-turing, 55 (629): 66-68(in Chinese).
[38] Antoni Niepokolczycki, Jerzy Komorowski. ICAF 2019 -Structural Integrity in the age of Additive Manufactur-ing[C]. Proceedings of the 30th Symposium of the Inter-national Committee on Aeronautical Fatigue, June 2-7, 2019, Krakow, Poland.
[39] Lin Xin, Huang Weidong. Laser additive manufacturing of high-performance metal com
[40] 袁丁, 高华兵, 孙小婧, 等. 改善金属增材制造材料组织与力学性能的方法与技术[J]. 航空制造技术, 2018, 61(10):40-48.
YUAN D, GAO H B, SUN X J, et al. Methods and tech-nologies for improving the microstructure and mechanical properties of metal additive manufacturing materials [J]. Aviation manufacturing technology, 2018, 61 (10): 40-48(in Chinese).
[41] 高玉魁, 赵振业. 齿轮的表面完整性与抗疲劳制造技术的发展趋势[J]. 金属热处理, 2014, 39(4):1-6.
GAO Y K, ZHAO Z Y. Development trend of gear sur-face integrity and anti-fatigue manufacturing technology [J]. Metal heat treatment, 2014, 39 (4): 1-6(in Chinese).
[42] 任永明, 林鑫, 黄卫东. 增材制造Ti-6Al-4V合金组织及疲劳性能研究进展[J]. 稀有金属材料与工程, 2017, 46(10):3160-3168.
REN Y M, LIN X, HUANG W D. Research progress on Microstructure and fatigue properties of Ti-6Al-4V Alloy by additive manufacturing [J]. Rare metal materials and engineering, 2017, 46 (10): 3160-3168(in Chinese).
[43] 杨光, 刘佳蓬, 钦兰云, 等. 激光沉积TA15钛合金高周疲劳性能研究[J]. 稀有金属, 2018, 42(11):1134-1142.
YANG G, LIU J P, QIN L Y, et al. High cycle fatigue properties of laser deposited TA15 titanium alloy [J]. Rare metals, 2018, 42 (11): 1134-1142(in Chinese).
[44] 贺瑞军, 王华明. 激光沉积Ti-6Al-2Zr-Mo-V钛合金高周疲劳性能[J]. 航空学报, 2010, 31(7):1488-1493.
HE R J, WANG H M. High cycle fatigue properties of laser deposited ti-6al-2zr-mo-v titanium alloy [J]. Acta Aeronautica Sinica, 2010, 31 (7): 1488-1493(in Chi-nese).
[45] WANG F D, Williams S, Paul C, et al. Micro-structure and Mechanical Properties of Wire and Arc Additive Manufactured Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2013, 44(2):968-977.
[46] ZHANG J K, WANG X Y, Paddea s, et al. Fatigue crack propagation behavior in Wire+Arc additive manufactured Ti-6Al-4V:Effects of microstructure and Residual stress[J]. Materials and Design, 2016, 90:551-561.
[47] ZHANG H Y, DONG D K, SU S P, et al. Experimental study into the effect of post progress on fracture tough-ness and fatigue crack growth performance of selective laser melting Ti-6Al-4V[J]. Chinese Journal of Aero-nautics, 2019, 32(10):2383-2393.
[48] 马玉娥, 孙文博, 艾霄鹏, 等. SLM打印钛合金的疲劳性能研究[C]. 2018年全国固体力学学术会议, 哈尔滨, 2018.11.23-2018.11.25.
MA Y E, SUN W B, A X P, et al. Fatigue properties of SLM printed titanium alloy [C]. National Conference on solid mechanics, Harbin, 2018.11.23-2018.11.25(in Chinese).
[49] 王东坡, 龚宝明, 吴世品, 等. 焊接接头与结构疲劳延寿技术研究进展综述[J]. 华东交通大学, 2016, 33(6):1-14.
WANG D P, GONG B M, WU S P, et al. Review on re-search progress of welded joint and structural fatigue life extension technology [J]. East China Jiaotong University, 2016, 33 (6): 1-14(in Chinese).
[50] 晁耀杰, 李宏佳, 李钦杰. A7N01铝合金焊接接头组织对疲劳断裂的影响[J]. 焊接学报, 2017, 8:5-9.
CHAO Y J, LI H J, LI Q J. Effect of microstructure on fatigue fracture of a7n01 aluminum alloy welded joint [J]. Acta welding Sinica, 2017, 8:5-9(in Chinese).
[51] 黄彪, 唐正平, 陈鑫, 等. 6061-T6铝合金激光焊接接头腐蚀疲劳裂纹扩展[J]. 精密成形工程, 2017, 9(2):27-33.
HUANG B, TANG Z P, CHEN X et al. Corrosion fa-tigue crack propagation of 6061-T6 aluminum alloy laser welded joint [J]. Precision forming engineering, 2017, 9 (2): 27-33(in Chinese).
[52] 许良, 费昺强, 回丽, 等. 钛合金激光/氩弧斜焊缝疲劳性能对比研究[J]. 科学技术与工程, 2017, 17(6):167-171.
XU L, FEI M Q, HUI L, et al. Comparative study on fa-tigue properties of laser argon arc oblique weld of titani-um alloy [J]. Science and technology and engineering, 2017, 17 (6): 167-171(in Chinese).
[53] 马国栋. 搅拌摩擦焊接接头的损伤累积规律研究[J]. 北京: 北京交通大学, 2016.
MA G D. Study on damage accumulation law of friction stir welded joints [J]. Beijing: Beijing Jiaotong University, 2016
[54] HAAGENSEN P,MADDOX S. IIW recommendations on methods for improving the fatigue lives of welded joints[M]. Cambridge: Woodhead Publishing Ltd, 2013.(in Chinese).
[55] 赵小辉. 几种航空材料焊接接头疲劳性能研究[J]. 天津: 天津大学, 2009.
ZHAO X H. Study on fatigue properties of welded joints of several aviation materials [J]. Tianjin: Tianjin Univer-sity, 2009
[56] 李杰. 激光喷丸对7075铝合金搅拌摩擦焊接头的影响[J]. 宇航材料工艺, 2010, (1):60-63.
LI J. Effect of laser shot peening on friction stir welded joint of 7075 aluminum alloy [J]. Aerospace materials technology, 2010, (1): 60-63(in Chinese).
[57] 钱晓明, 姜银方, 管海兵, 等. 飞机结构件禁锢孔强化技术综述[J]. 机械强度, 2011, 33(5):749-753.
QIAN X M, JIANG Y F, GUAN H B, et al. A review of reinforcement technology of aircraft structure's confine-ment hole [J]. Mechanical strength, 2011, 33 (5): 749-753(in Chinese).
[58] CHAKHERLOU T N, VOGWELL J. The effect of cold expansion on improving the fatigue life of fastener holes[J]. Engineering Failure Analysis, 2003, 10(1):13-24.
[59] 王欣, 胡仁高, 胡博, 等. 孔挤压对于高温合金GH4169孔结构高温疲劳性能的影响[J]. 航空动力学报, 2017, 32(1):89-95.
WANG X, HU R G, HU B, et al. Effect of hole extrusion on high temperature fatigue properties of Superalloy GH4169 [J]. Journal of Aeronautical dynamics, 2017, 32 (1): 89-95(in Chinese).
[60] 葛恩德, 苏宏华, 程远庆, 等. TC4板孔冷挤压强化残余应力分布与疲劳寿命[J]. 中国机械工程, 2015, 26(7):971-976.
GEN D, SU H H, CHENG Y Q, et al. Residual stress distribution and fatigue life of TC4 plate hole after cold extrusion strengthening [J]. China Mechanical Engineer-ing, 2015, 26 (7): 971-976(in Chinese).
[61] 葛恩德, 傅玉灿, 苏宏华, 等. TC21铝合金板孔冷挤压残余应力与疲劳性能研究[J]. 稀有金属材料与工程, 2016, 45(5):1189-1195.
GEN D, FU YC, SU H H, et al. Study on residual stress and fatigue properties of TC21 aluminum alloy plate during cold extrusion [J]. Rare metal materials and engi-neering, 2016, 45 (5): 1189-1195(in Chinese).
[62] 王燕礼, 朱有利, 曹强, 等. 孔挤压强化技术研究进展与展望[J]. 航空学报, 2018, 39(2):021336.
WANG Y L, ZHU L, CAO Q, et al. Research progress and Prospect of hole extrusion strengthening technology [J]. Acta Aeronautica et Astronautica Sinica, 2018, 39 (2): 021336(in Chinese).
[63] WANG Y l, ZHU Y L, HOU S, et al. Investigation on fatigue performance of cold expansion holes of 6061-T6 aluminum alloy[J]. International Journal of Fatigue, 2017, 95:216-228.
[64] 杨洪源, 刘文珽. 孔挤压强化疲劳增寿效益的试验研究[J]. 机械强度, 2010, 32(3):446-450.
YANG H Y, LIU WENJU. Experimental study on fatigue life enhancement effect of hole extrusion strengthening [J]. Mechanical strength, 2010, 32 (3): 446-450(in Chinese).
[65] 王彩勇. 小直径开缝衬套冷挤压强化孔疲劳寿命研究[D]. 南京: 南京航空航天大学, 2016.
WANG C Y. Study on fatigue life of cold extrusion strengthening hole of small diameter slotted bushing [D]. Nanjing: Nanjing University of Aeronautics and Astro-nautics, 2016(in Chinese).
[66] 欧阳小穗. 孔挤压强化工艺对叠层元件疲劳寿命影响分析[D]. 上海: 上海交通大学, 2011.
OU YANG X S. Effect of hole extrusion strengthening process on fatigue life of laminated components [D]. Shanghai: Shanghai Jiaotong University, 2011(in Chi-nese).
[67] 黄志超, 吕世亮, 谢春辉, 等. 先进喷丸表面改性技术研究进展[J]. 材料科学与工艺, 2015, 23(3):57-61.
HUANG Z C, LV S L, XIE C H, et al. Research progress of advanced shot peening surface modification technology [J]. Materials science and technology, 2015, 23 (3): 57-61(in Chinese).
[68] 张炜, 曹亮, 高国强, 等. 国内外航空喷丸技术与装备发展[J]. 航空制造技术, 2013, 17:32-35.
ZHANG W, CAO L, GAO G Q, et al. Development of aviation shot peening technology and equipment at home and abroad [J]. Aviation manufacturing technology, 2013, 17:32-35(in Chinese).
[69] 周松, 谢里阳, 回丽, 等. 喷丸强化对2XXX铝合金疲劳寿命的影响[J]. 材料工程, 2014, (12):86-91.
ZHOU S, XIE L Y, HUI L, et al. Effect of shot peening on fatigue life of 2XXX aluminum alloy [J]. Materials engineering, 2014, (12): 86-91(in Chinese).
[70] 王欣, 李旭东, 宋颖刚, 等. 三种典型发动机用材料疲劳极限应力集中敏感性及喷丸的影响[J]. 航空材料学报, 2017, 37(6):102-107.
WANG X, LI X D, SONG Y G, et al. Fatigue limit stress concentration sensitivity of three typical engine materials and effect of shot peening [J]. Journal of aeronautical materials, 2017, 37 (6): 102-107(in Chinese).
[71] 章艳, 张兴权, 左立生, 等. 激光喷丸强化对半圆孔件疲劳寿命的影响[J]. 材料科学与工艺, 2015, 23(2):19-24.
ZHANG Y, ZHANG X Q, ZUO L S, et al. Effect of laser shot peening on fatigue life of semi-circular hole parts [J]. Materials science and technology, 2015, 23 (2): 19-24(in Chinese).
[72] 杨坤. 喷丸校形对薄壁蒙皮结构疲劳性能影响研究[J]. 中国科技信息, 2015, (15):29-30.
YANG K. Effect of shot peening on fatigue performance of thin-walled skin [J]. China Science and technology in-formation, 2015, (15): 29-30(in Chinese).
[73] 田宇, 王丽艳, 李明君, 等. TC11钛合金液体喷丸疲劳性能研究[J]. 大型铸锻件, 2015, (6):22-24.
TIAN Y, WANG L Y, LI M J, et al. Liquid shot peening fatigue properties of TC11 titanium alloy [J]. Large cast-ing and forging, 2015, (6): 22-24(in Chinese).
[74] 徐滨士. 再制造工程与自动化表面工程技术[J]. 金属热处理, 2008, 33(1):9-14.
XU B S. Remanufacturing engineering and automatic surface engineering technology [J]. Metal heat treatment, 2008, 33 (1): 9-14(in Chinese).
[75] 余江, 姜银方, 戴亚春, 等. 铝合金紧固孔复合强化工艺研究[J]. 表面技术, 2016, 45(11):153-158.
YU J, JIANG Y F, DAI Y c, et al. Study on composite strengthening process of aluminum alloy fastening hole [J]. Surface technology, 2016, 45 (11): 153-158(in Chinese).
[76] 王科昌, 罗学昆, 刘克辉, 等. 表面加工方法对TC4钛合金表面完整性及高周疲劳性能的影响[J]. 钛工业进展, 2018, 35(3):39-44.
WANG K C, LUO X K, LIU K H, et al. Effect of surface processing methods on surface integrity and high cycle fatigue properties of TC4 titanium alloy [J]. Titanium industry progress, 2018, 35 (3): 39-44(in Chinese).
[77] 樊俊铃, 郭杏林, 吴承伟. 疲劳特性的红外热像定量分析方法研究进展[J]. 力学与实践, 2012, 34(6):7-17.
FAN J L, GUO X L, WU C W. Research progress of in-frared thermography quantitative analysis method for fa-tigue characteristics [J]. Mechanics and practice, 2012, 34 (6): 7-17(in Chinese).
[78] LIU X W, LU D G, Pierre C J. Hoogenboom, Hierar-chical Bayesian fatigue data analysis. International Journal of Fatigue, 2017, 100(1):418-428.
[79] SHAN L, Y L S, MAO Y, Y L. A modified Walker model dealing with mean stress effect in fatigue life prediction for aeroengine disks [J]. Mathmatical Problems in Engi-neering, 2018, 3:5148278.
[80] 张天宇, 何宇廷, 陈涛, 等. 一种多钉铆接连接件的疲劳寿命分析方法[J]. 北京航空航天大学学报, 2018, 44(9):1933-1940.
ZHANG T Y, HE Y T, CHEN T, et al. A fatigue life analysis method for multi rivet riveted connectors [J]. Journal of Beijing University of Aeronautics and Astro-nautics, 2018, 44 (9): 1933-1940(in Chinese).
[81] 石亮, 魏大盛, 王延荣.考虑应力梯度的轮盘疲劳寿命预测[J].航空动力学报, 2013, 28(6): 1236-1242.
SHI L, WEI D S, WANG Y R. Fatigue life prediction of wheel disc considering stress gradient [J]. Journal of Aeronautical power, 2013, 28 (6): 1236-1242(in Chi-nese).
[82] 刘香, 王延荣, 田爱梅等. 考虑尺寸效应的缺口疲劳寿命预测方法[J].航空动力学报, 2017, 32(2): 429-437.
LIU X, WANG Y R, TIAN A M, et al. Notch fatigue life prediction method considering size effect [J]. Journal of Aeronautical dynamics, 2017, 32 (2): 429-437(in Chi-nese).
[83] 魏大盛, 陈妍妍, 王延荣, 等. 基于表面缺陷特征的疲劳寿命预测方法[J]. 航空动力学报, 2019, 34(1):92-98.
WEI D S, CHEN Y Y, WANG Y R, et al. Fatigue life prediction method based on surface defect characteristics [J]. Journal of Aeronautical power, 2019, 34 (1): 92-98(in Chinese).
[84] 苏运来, 陆山, 杨茂,刘小桃, 张凭. 考虑缺口和体积效应的轮盘等效体积概率寿命分析方法[J]. 推进技术, 2018, 39(12):186-193.
SU Y L, LU S, YANG M, LIU X T, ZHANG P. Probabilistic life analysis method of equivalent volume of wheel disc considering notch and volume effect [J]. Propulsion technology, 2018, 39 (12): 186-193(in Chinese).
[85] 夏天翔, 姚卫星, 李旭东等. 工程构件疲劳寿命估算的三维临界域法[J]. 南京航空航天大学学报, 2014, 46(3): 395-402.
XIA T X, YAO W X, LI X D, et al. Three dimensional critical region method for fatigue life estimation of engi-neering components [J]. Journal of Nanjing University of Aeronautics and Astronautics, 2014, 46 (3): 395-402(in Chinese).
[86] 郑晓玲. 民机结构耐久性与损伤容限设计手册[M]. 北京: 航空工业出版社, 2003.
ZHENG X L. Design manual for durability and damage tolerance of civil aircraft structures [M]. Beijing: Aviation Industry Press, 2003(in Chinese).
[87] 董登科, 杨玉恭. 疲劳破坏概率分析中的细节疲劳额定值研究[J]. 工程力学, 1998, A01:266-270.
DONG D K, YANG Y G. Study on detail fatigue rating in fatigue failure probability analysis [J]. Engineering mechanics, 1998, A01: 266-270(in Chinese).
[88] 陈先民, 董登科, 李姗山. 细节疲劳额定值法的拓展应用研究[J]. 应用力学学报, 2014, 31(3):474-477.
CHEN X M, DONG D K, LI S S. Research on extended application of detail fatigue rating method [J]. Journal of applied mechanics, 2014, 31 (3): 474-477(in Chinese).
[89] 樊俊铃. 基于Gerber模型的DFR法与结构细节效应[J]. 航空材料学报, 2016, 36(2):80-86.
FAN J L. DFR method and structural detail effect based on Gerber model [J]. Journal of aeronautical materials, 2016, 36 (2): 80-86(in Chinese).
[90] 黄啸, 刘建中, 马少俊, 等. 细节疲劳额定强度计算参量取值敏感性研究[J]. 航空学报, 2012, 33(5):863-870.
HUANG X, LIU J Z, MA S J, et al. Study on sensitivity of calculation parameters of detail fatigue rated strength [J]. Acta Aeronautica Sinica, 2012, 33 (5): 863-870(in Chinese).
[91] 陈跃良, 吴省均, 卞贵学, 等. 基于Gerber模型的DFR腐蚀折算系数及其试验测定[J]. 材料导报, 2019, 33(8):2793-2798.
CHEN Y L, WU S J, BIAN G X, et al. DFR corrosion conversion coefficient based on Gerber model and its experimental determination [J]. Materials guide, 2019, 33 (8): 2793-2798(in Chinese).
[92] 宋恩鹏, 曹奇凯, 赵清华, 等. 军机DFR方法在钛合金电子束横焊缝结构上的应用验证[J]. 应用力学学报, 2014, 31(5):715-720.
SONG E P, CAO Q K, ZHAO Q H, et al. Application verification of DFR method in transverse electron beam welding of titanium alloy [J]. Journal of applied mechan-ics, 2014, 31 (5): 715-720(in Chinese).
[93] 王晓玮, 尚德广, 熊健. 多轴载荷下结构细节疲劳额定强度值确定方法[J]. 装备环境工程, 2018, 15(3):92-97.
WANG X W, SHANG D G, XIONG J. Determination method of fatigue rated strength of structural details under multiaxial load [J]. Equipment environmental engineering, 2018, 15 (3): 92-97(in Chinese).
[94] 董登科, 王俊扬. 紧固孔原始疲劳质量控制与制孔技术研究[J]. 工程力学, 1999, 2(a02):474-479.
DONG D K, WANG J Y. Study on quality control and drilling technology of fastener hole original fatigue [J]. Engineering mechanics, 1999, 2 (A02): 474-479(in Chinese).
[95] 周俊杰, 王生楠. 飞机机翼壁板紧固孔细节原始疲劳质量评估[J]. 西北工业大学学报, 2018, 36(1):91-95.
ZHOU J J, WANG S N. Original fatigue quality assess-ment of aircraft wing panel fastening hole details [J]. Journal of Northwest Polytechnic University, 2018, 36 (1): 91-95(in Chinese).
[96] YAO W X. Stress field intensity approach for prediction fatigue life[J]. International Journal of Fatigue, 1993, 15(3): 234-245.
[97] 贺小帆, 隋芳媛, 王天帅, 等. 机群结构耐久性分析的裂纹萌生方法[J]. 北京航空航天大学学报, 2016, 42(5):865-870.
HE X F, SUI F Y, WANG T S, et al. Crack initiation method for durability analysis of aircraft group structures [J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42 (5): 865-870(in Chinese).
[98] 张胜, 何宇廷, 张腾, 等. 飞机典型连接结构原始疲劳质量评估[J]. 机械强度, 2016, 38(3):480-484.
ZHANG S, HE Y T, ZHANG T, et al. Original fatigue quality assessment of aircraft typical connection structure [J]. Mechanical strength, 2016, 38 (3): 480-484(in Chinese).
[99] ANTUNES F V, BRANCO R, COSTA J D, et al. Plastic-ity induced crack closure in middle-crack tension speci-men: numerical versus experimental[J]. Fatigue and Fracture of Engineering Materials and Structures, 2010, 33(10):673-686.
[100] WEN P H, ALIABADI M H. A variational approach for evaluation of stress intensity factors using the element free Galekin method[J]. International Journal of Solids and Structures, 2011, 48(7/8):1171-1179.
[101] 樊俊铃. 基于权函数法的应力强度因子计算和断裂评估[J]. 航空动力学报, 2018, 33(8):1886-1895.
FAN J L. Stress intensity factor calculation and fracture evaluation based on weight function method [J]. Journal of Aeronautical dynamics, 2018, 33 (8): 1886-1895(in Chinese).
[102] 樊俊铃, 郭杏林. 弹塑性疲劳裂纹扩展行为的数值模拟[J]. 机械工程学报, 2015, 51(10):33-40.
FAN J L, GUO X L. Numerical simulation of elastic-plastic fatigue crack growth behavior [J]. Journal of me-chanical engineering, 2015, 51 (10): 33-40(in Chinese).
[103] XU W, WU X R. Weight functions and strip-yield model analysis for three collinear cracks[J]. Engineering Fracture Mechanics, 2012, 85(5):73-87(in Chinese).
[104] XU W, WU X R. Weight function and strip yield solu-tion for two equal-length collinear cracks in an infinite sheet[J]. Engineering Fracture Mechanics, 2011, 78(11):2356-2368.
[105] BAO R, ZHANG X, YAHAYA N A. Evaluating stress intensity factors due to weld residual stresses by the weight function and finite element methods[J]. Engi-neering Fracture Mechanics, 2010, 77(13):2550-2566.
[106] 谢伟杰,李荻,胡艳玲,等. LY12CZ 和 7075T7351 铝合金在 EXCO 溶液中腐蚀动力学的统计研究[J]. 航空学报. 1999(1): 35-39.
XIE W J, LI DI, HU Y L, et al. Statistical study on cor-rosion kinetics of LY12CZ and 7075T7351 aluminum al-loys in EXCO solution [J]. Acta Aeronautica Sinica. 1999 (1): 35-39(in Chinese).
[107] 宫经全, 张少钦, 李禾, 等. 基于相互作用积分法的应力强度因子计算[J]. 南昌航空航天大学学报(自然科学版), 2015, 1:42-48.
GONG J Q, ZHANG S Q, LI HE, et al. Calculation of stress intensity factor based on interaction integral method [J]. Journal of Nanchang University of Aeronautics and Astronautics (NATURAL SCIENCE EDITION), 2015, 1:42-48(in Chinese).
[108] 黄甫. 飞机大开口结构的应力强度因子有限元计算[J]. 中国科技信息, 2014, 13:35-36.
HUANG F. Finite element calculation of stress intensity factor of aircraft large opening structure [J]. China Sci-ence and technology information, 2014, 13:35-36(in Chinese).
[109] 樊俊铃, 郭强, 赵延广, 等. 基于有限元法和锁相热像法对含缺陷构件的应力分析与疲劳性能评估[J]. 材料工程, 2015, 43(8):62-71.
FAN J L, GUO Q, ZHAO Y G, et al. Stress analysis and fatigue performance evaluation of components with de-fects based on finite element method and phase-locked thermography [J]. Materials engineering, 2015, 43 (8): 62-71(in Chinese).
[110] 陈龙, 蔡力勋. 考虑裂尖疲劳损伤的材料疲劳裂纹扩展行为研究[J]. 机械工程学报, 2012, 48(20):51-56.
CHEN L, CAI L X. Study on fatigue crack growth be-havior of materials considering crack tip fatigue damage [J]. Journal of mechanical engineering, 2012, 48 (20): 51-56(in Chinese).
[111] 石凯凯, 蔡力勋, 包陈. 预测疲劳裂纹扩展的多种理论模型研究[J]. 机械工程学报, 2014, 50(18):50-58.
SHI K K, CAI L X, BAO C. Study on various theoretical models for predicting fatigue crack growth [J]. Journal of mechanical engineering, 2014, 50 (18): 50-58(in Chinese).
[112] 赵国荣, 刘亚凤, 蒋永洲, 等. 航空发动机涡轮盘用GH4133B合金疲劳裂纹扩展寿命概率预测[J]. 机械工程学报, 2015, 51(18):71-82.
ZHAO G R, LIU Y F, JIANG Y Z, et al. Probabilistic prediction of fatigue crack growth life of GH4133B alloy for Aero-Engine Turbine Disk [J]. Journal of mechanical engineering, 2015, 51 (18): 71-82(in Chinese).
[113] QIAN J, FATEMI A. Mixed mode fatigue crack growth: a literature survey[J]. Engineering fracture mechanics, 1996, 55(6):969-990.
[114] 王昌军, 侯威, 陈四利, 等. I-II复合型裂纹等 线体积应变能断裂准则[J]. 应用力学学报, 2017, 34(1):186-190.
WANG C J, HOU W, CHEN S L, et al. I-II composite crack equal line volume strain energy fracture criterion [J]. Journal of applied mechanics, 2017, 34 (1): 186-190(in Chinese).
[115] 苏少普, 曹淑森, 廖江海, 等. 基于紧凑拉伸剪切结构的复合型疲劳裂纹扩展研究[J]. 应用力学学报, 2020, 37(1):85-90.
SU S P, CAO S S, LIAO J H, et al. Study on composite mode fatigue crack growth based on compact tensile shear structure [J]. Journal of applied mechanics, 2020, 37 (1): 85-90(in Chinese).
[116] 李庆芬, 齐桂营, 朱莉, 等. MCTS试件的三维有限元计算断裂分析[J]. 哈尔滨工业大学学报, 2011, 32(9):1157-1162.
LI Q F, QI G Y, ZHU L, et al. Fracture analysis of MCTs specimens by three-dimensional finite element method [J]. Journal of Harbin Institute of technology, 2011, 32 (9): 1157-1162(in Chinese).
[117] 马家升. 三维复合型裂纹应力强度因子有限元分析[D]. 哈尔滨: 哈尔滨工程大学, 2008.
MA J S. Finite element analysis of stress intensity factor of three dimensional composite mode crack [D]. Harbin: Harbin Engineering University, 2008(in Chinese).
[118] GUO W L. Elastoplastic three dimensional crack border field--II. Asymptotic solution for the field[J]. Engineering Fracture Mechanics, 1993, 46:105~113.
[119] GUO W L. Recent advances in three-dimensional frac-ture mechanics. Key Engineering Materials, 2000, 183-187:193~198.
[120] 于培师. 含曲线裂纹结构的三维断裂与疲劳裂纹扩展模拟研究[D]. 南京: 南京航空航天大学, 2010.
YU P S. Three dimensional fracture and fatigue crack growth simulation of structures with curved cracks [D]. Nanjing: Nanjing University of Aeronautics and Astro-nautics, 2010(in Chinese).
[121] 郭万林, 于培师. 构件三维断裂与疲劳力学及其在航空工程中的应用[J]. 固体力学学报, 2010, 31(5):553-571.
GUO W L, YU P S. Three dimensional fracture and fa-tigue mechanics of components and its application in Aeronautical Engineering [J]. Journal of solid mechanics, 2010, 31 (5): 553-571(in Chinese).
[122] 柴国钟, 吕君, 鲍雨梅, 等. 表面裂纹疲劳扩展和寿命计算的高效高精度数值分析方法[J]. 航空学报, 2017, 38(12):221291.
CHAI G Z, LV J, BAO Y M, et al. High efficiency and high precision numerical analysis method for fatigue growth and life calculation of surface cracks [J]. Acta Aeronautica et Astronautica Sinica 2017, 38 (12): 221291(in Chinese).
[123] CHERRY M C., MALL S, HEINIMANN B, et al Re-sidual strength of unstiffened aluminumpanels with mul-tiple site damage[J]. Engineering Fracture Mechanics. 1997, 57(6): 701-713.
[124] OMORI Y, MA L, OKADA H, et al. The T*-integral Analysis ofAluminum specimens[J]. Theoretical and Applied Mechanics, 1996, 4: 89-94.
[125] ATLURI S N, NISHIOKA T, NAKAGAKI M. Incre-mental path-independent integrals in inelastic anddynamic fracture mechanics. Engineering Facture Mechanics. 1984,16(3): 341-364.
[126] BRUST F W, NISHIOKA T, ATLURI S N, et al. Further studies on Elastic-plastic stablefracture Utilizing the T* integral[J]. Engineering Fracture Mechanics. 1985, 22(6): 1079-1103.
[127] MA L. Crack linkup and residual strength of aircraft structure containing multiple site damage[D].University of Washington. 1999.
[128] SWIFT T. Widespread fatigue damage monitoring – issues and concerns[C]. In: Proc. 5th Int. Conf. onStruc-tural Airworthiness of New and Ageing Aircraft, 1993:113-150.
[129] HIJAZI A L, SMITH B L, Lacy T E Linkup strength of 2024-T3 bolted lap joint panels withmultiple-site dam-age[J]. Journal of Aircraft. 2004, 41(2):359-364.
[130] SMITH B, HIJAZI A, HAQUE A , et al. Strength of stiffened panels with multiplesite damage[J]. Journal of Aircraft. 2001, 38(4):764–768.
[131] SMITH B, SAVILLE P, MOUAK A, et al. Strength of 2024-T3 aluminum panels with multiplesite damage[J]. Journal of Aircraft. 2000, 37(2): 325–331.
[132] DUONG C N, CHEN C C, YU J. An energy approach to link-up of multiple cracks in thinaluminum alloy sheets[J]. Theoretical and Applied Fracture Mechanics. 2001, 35:111-127.
[133] LABEAS G, DIAMANTAKOS J, KERMANIDIS T. Crack link-up for multiple site damage using anenergy density approach[J]. Theoretical and Applied Fracture Mechanics. 2005, 43: 233–43.
[134] 张明义, 袁帅, 钟敏, 等. 金属材料和结构的疲劳寿命预测概率模型及应用研究进展[J]. 材料导报, 2018, 32(3):808-814.
ZHANG M Y, YUAN S, ZHONG M, et al. Research progress on probabilistic models and application of fa-tigue life prediction for metal materials and structures [J]. Materials guide, 2018, 32 (3): 808-814
[135] 毛可毅, 于朋涛, 牟浩蕾, 等. 广布疲劳损伤裂纹萌生问题研究[J]. 机械科学与技术, 2015, 34(4):653-656.
MAO K Y, YU P T, MOU H L, et al. Study on crack ini-tiation of widespread fatigue damage [J]. Mechanical science and technology, 2015, 34 (4): 653-656(in Chi-nese).
[136] 张侃. 多细节结构的疲劳寿命估算方法研究[D]. 南京: 南京航空航天大学, 2012.
ZHANG K. Study on fatigue life estimation method of multi detail structure [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
[137] 王森, 刘马宝, 王国力, 等. 广布损伤的试验研究与有限元分析[J]. 航空学报, 2010, 31(8):1578-1583.
WANG S, LIU M B, WANG G L, et al. Experimental study and finite element analysis of widespread damage [J]. Acta Aeronautica et Astronautica Sinica, 2010, 31 (8): 1578-1583(in Chinese).
[138] 李政鸿, 徐武, 张晓晶, 等. 多孔多裂纹平板的疲劳裂纹扩展试验与分析方法[J]. 航空学报, 2018, 39(7):221867.
LI Z H, XU WU, ZHANG X J, et al. Fatigue crack growth test and analysis method of porous multi crack plate [J]. Acta Aeronautica et Astronautica Sinica, 2018, 39 (7): 221867(in Chinese).
[139] 廖敏, 孙秦, 徐晓飞. 含多裂纹连接结构损伤容限试验研究[J]. 航空学报, 1998, 19(1): 103-106.
LIAO M, SUN Q, XU X F. Experimental study on dam-age tolerance of structures with multiple cracks [J]. Acta Aeronautica Sinica, 1998, 19 (1): 103-106(in Chinese).
[140] 赵晋芳, 谢里阳, 刘建中. 有限板共线多孔MSD疲劳裂纹扩展有限元模拟[J]. 工程设计学报, 2009, 16(4): 256-260.
ZHAO J F, XIE L Y, LIU J Z. Finite element simulation of fatigue crack growth of collinear porous MSD in finite plate [J]. Journal of engineering design, 2009, 16 (4): 256-260(in Chinese).
[141] ROBERTO GALATOLO, KARL-FREDRIK NILSSON. An experimental and numerical analysis of residual strength of butt-joints panels with multiple site damage[J]. Engineering Fracture Mechanics, 2001, 68: 1437-1461.
[142] SILVA L F, CONCALVES J P, OLIVEIRA F M, et al. Multiple-site damage in riveted lap-joints: experimental simulation and finite element prediction[J]. International Journal of Fatigue, 2000:319-338.
[143] 李宴宾, 陈莉, 董登科, 等. 结构细节疲劳额定值与结构细节数目之间的关系研究[J]. 机械强度, 2012, 34(6):934-938.
LI Y B, CHEN L, DONG D K, et al. Relationship be-tween fatigue rating of structural details and number of structural details [J]. Mechanical strength, 2012, 34 (6): 934-938(in Chinese).
[144] 王芳丽, 朱书华, 李宴宾, 等. 铝合金板广布损伤裂纹扩展顺序的数值分析[J]. 航空计算技术, 2014, 44(2): 66-69.
WANG F L, ZHU S H, LI Y B, et al. Numerical analysis of propagation sequence of widespread damage crack in aluminum alloy plate [J]. Aeronautical computing tech-nology, 2014, 44 (2): 66-69(in Chinese).
[145] 张文东, 董登科. 共线多孔MSD的干涉影响及裂纹扩展模拟[J]. 机械强度, 2013, 35(6):829-833.
ZHANG W D, DONG D K. Interference effect and crack propagation simulation of collinear porous MSD [J]. Mechanical strength, 2013, 35 (6): 829-833(in Chinese).
[146] 杜永恩, 王生楠, 闫晓中. 基于Neumann展开的Monte-Carlo随机扩展有限元法[J]. 西北工业大学学报, 2013, 31(3):423-426.
DU Y E, WANG S N, YAN X Z. Monte Carlo stochastic extended finite element method based on Neumann ex-pansion [J]. Journal of Northwest Polytechnic University, 2013, 31 (3): 423-426(in Chinese).
[147] 杜永恩, 王生楠. 飞机结构MSD失效概率的敏感性分析[J]. 北京航空航天大学学报, 2014, 40(5):658-661.
DU Y E, WANG S N. Sensitivity analysis of failure probability of aircraft structure with MSD [J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40 (5): 658-661(in Chinese).
[148] 赵树力, 余音, 徐武. 疲劳多裂纹扩展的常规态型近场动力学分析[J]. 哈尔滨工业大学学报, 2019, 51(4):19-25.
ZHAO S L, YU Y, XU W. Conventional mode near field dynamic analysis of fatigue multiple crack growth [J]. Journal of Harbin Institute of technology, 2019, 51 (4): 19-25(in Chinese).
[149] 谢里阳, 任俊刚, 吴宁祥, 等. 复杂结构部件概率疲劳寿命预测方法与模型[J]. 航空学报, 2015, 36(8):2688-2695.
XIE L Y, REN J G, WU N X, et al. Probabilistic fatigue life prediction method and model of complex structural components [J]. Acta Aeronautica et Astronautica Sinica, 2015, 36 (8): 2688-2695(in Chinese).
[150] WEI R J, LIAO C M, GAO M. ASTM study of micro-constituent induced corrosion in2024-T3 and 7057-T6 aluminum alloy[J]. Metallurgical and Material Transaction, 1998,29: 1153-1160.
[151] TURNBULL A. Issues in modeling of environment assisted cracking[J]. Corrosion Science,1993, 34(6): 921-960.
[152] 刘文珽, 李玉海. 飞机结构日历寿命体系评定技术[M]. 北京: 航空工业出版社, 2004.
LIU W Z, LI Y H. Evaluation technology of calendar life system for aircraft structure [M]. Beijing: Aviation In-dustry Press, 2004(in Chinese).
[153] 贺小帆, 刘文珽, 蒋东滨. 一种考虑腐蚀影响的飞机结构疲劳试验方法[J]. 北京航空航天大学学报, 2003, 29(1): 20-22.
HE X F, LIU W J, JIANG D B. A fatigue test method for aircraft structures considering corrosion effect [J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29 (1): 20-22(in Chinese).
[154] 张福泽, 谭卫东, 宋军, 等. 腐蚀温度对飞机疲劳寿命的影响[J]. 航空学报, 2004, 25(5): 473-475.
ZHANG F Z, TAN W D, SONG J, et al. Effect of corro-sion temperature on fatigue life of aircraft [J]. Acta Aer-onautica Sinica, 2004, 25 (5): 473-475(in Chinese).
[155] 李玉海, 贺小帆, 陈群志, 等. 铝合金试件腐蚀深度分布特性及变化规律研究[J]. 北京航空航天大学学报, 2002, 28(1): 98-101.
LI Y H, HE X F, CHEN Q Z, et al. Study on corrosion depth distribution characteristics and variation law of aluminum alloy specimens [J]. Journal of Beijing Uni-versity of Aeronautics and Astronautics, 2002, 28 (1): 98-101(in Chinese).
[156] 崔常京, 陈群志, 王逾涯, 等. 模拟某机场大气环境下LY12CZ铝合金的腐蚀行为及其当量关系的建立[J]. 腐蚀科学与防护技术, 2009, 21(3): 291-294.
CUI C J, CHEN Q Z, WANG Q Y, et al. Simulation of corrosion behavior of LY12CZ aluminum alloy under atmospheric environment of an airport and establishment of equivalent relationship [J]. Corrosion science and pro-tection technology, 2009, 21 (3): 291-294(in Chinese).
[157] 张有宏. 飞机结构的腐蚀损伤及其对寿命的影响[D]. 西安: 西北工业大学, 2007.
ZHANG Y H. Corrosion damage of aircraft structure and its effect on service life [D]. Xi'an: Northwest Polytechnic University, 2007(in Chinese).
[158] 陈跃良, 金平, 林典雄, 等. 海军飞机结构腐蚀控制及强度评估[M]. 北京: 国防工业出版社, 2009.
CHEN Y L, JIN P, LIN D X, et al. Corrosion control and strength evaluation of naval aircraft structures [M]. Bei-jing: National Defense Industry Press, 2009(in Chinese).
[159] WEI RP, LANDES ID. Correlation between sustained-load and fatigue crack growth inhigh-strength steel[J]. Mater. Res. Stand., 1969, 9(1): 25-27.
[160] AUSTEN IM, MCLNTYRE P. Corrosion fatigue of high strength steel in low pressurehydrogen gas[J]. Metal Science, 1979, 13(7): 420-428.
[161] 谢伟杰,李荻,胡艳玲,等. LY12CZ 和 7075T7351 铝合金在 EXCO 溶液中腐蚀动力学的统计研究[J]. 航空学报. 1999(1): 35-39.
XIE W J, LI D, HU Y L, et al. Statistical study on corro-sion kinetics of LY12CZ and 7075T7351 aluminum al-loys in EXCO solution [J]. Acta Aeronautica et Astro-nautica Sinica. 1999 (1): 35-39(in Chinese).
[162] 穆志韬,熊玉平. 高强度铝合金的腐蚀损伤分布规律研究[J]. 机械工程材料. 2002(4): 14-16.
MU Z T, XIONG Y P. Study on corrosion damage distri-bution of high strength aluminum alloy [J]. Mechanical engineering materials. 2002 (4): 14-16(in Chinese).
[163] 李玉海,贺小帆,陈群志,等. 铝合金试件腐蚀深度分布特性及变化规律研究[J]. 北京航空航天大学学报. 2002(1): 98-101.
LI Y H, HE X F, CHEN Q Z, et al. Study on corrosion depth distribution and variation law of aluminum alloy specimens [J]. Journal of Beijing University of Aero-nautics and Astronautics. 2002 (1): 98-101(in Chinese).
[164] 胡艳玲,李荻,郭宝兰. LY12CZ铝合金型材的腐蚀动力学统计规律研究及日历寿命预测方法探讨[J]. 航空学报. 2000(S1): 103-107.
HU Y L, LI D, GUO B L. Study on corrosion kinetics and calendar life prediction method of LY12CZ aluminum alloy profiles [J]. Acta Aeronautica et Astronautica Sinica. 2000 (S1): 103-107(in Chinese).
[165] 陈跃良,杨晓华,秦海勤. 飞机结构腐蚀损伤分布规律研究[J]. 材料科学与工程. 2002(3): 378-380.
CHEN Y L, YANG X H, QIN H Q. Study on corrosion damage distribution of aircraft structures [J]. Materials science and engineering. 2002 (3): 378-380(in Chinese).
[166] 陈跃良,吕国志,段成美. 服役条件下飞机结构腐蚀损伤概率模型研究[J]. 航空学报. 2002(3): 249-251.
CHEN Y L, LV G Z, DUAN C M. Study on corrosion damage probability model of aircraft structure under service conditions [J]. Acta Aeronautica et Astronautica Sinica. 2002 (3): 249-251(in Chinese).
[167] 张福泽. 金属材料日历寿命确定的分散系数和取值[J]. 航空学报, 2016, 37(2):397-403.
ZHANG F Z. Dispersion coefficient and value of calen-dar life determination of metallic materials [J]. Acta Aeronautica et Astronautica Sinica, 2016, 37 (2): 397-403(in Chinese).
[168] KONDO Y. Prediction of fatigue crack initiation life based on pit growth[J]. Corrosion, 2009, 45(1):7-11.
[169] SANKARAN K K, PEREZ R, JATA K V. Effects of pitting corrosion on the fatigue behavior of aluminum al-loy 7075-T6: modeling and experimental studies[J]. Ma-terials Science and Engineering: A. 2011, 297(1): 223-229.
颜光耀, 刘治国, 穆志涛, 等. 多种服役环境下航空铝合金疲劳裂纹扩展行为[J]. 国防科技大学学报, 2019, 41(3):112-118.
[170] YAN G Y, LIU Z G, MU Z T, et al. Fatigue crack growth behavior of aviation aluminum alloy under various service environments [J]. Journal of National Defense University of science and technology, 2019, 41 (3): 112-118(in Chinese).
[171] 邓景辉, 陈平剑, 付裕. 用于预腐蚀航空铝合金材料疲劳寿命分析的腐蚀当量裂纹的抛物线模型[J]. 航空学报, 2018, 39(2):221421.
DENG J H, CHEN P J, FU Y. Parabola model of corro-sion equivalent crack for fatigue life analysis of pre cor-roded aeronautical aluminum alloy materials [J]. Acta Aeronautica Sinica, 2018, 39 (2): 221421(in Chinese).
[172] 秦承华. 镍基合金GH4169疲劳小裂纹扩展性能研究[D]. 华东理工大学, 2015.
QIN C H. Study on small fatigue crack growth behavior of nickel based alloy GH4169 [D]. East China University of science and technology, 2015(in Chinese).
[173] DENG G J, TU S T, ZHANG X C, et al. Grain size effect on the small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169[J]. En-gineering Fracture Mechanics, 2016, 153:35-49.
[174] 刘洋, 朱祎国, 胡平. 基于多尺度特征应变均匀化计算HCP多晶体塑性[J]. 计算力学学报, 2019, 36(4):536-541.
LIU Y, ZHU Y G, HU P. Calculation of HCP polycrys-talline plasticity based on multi-scale characteristic strain homogenization [J]. Acta computational mechanics, 2019, 36 (4): 536-541(in Chinese).
[175] EISENLOHR P, DIEHL M, LEBENSOHN R A, et al. A spectral method solution to crystal elasto-viscoplasticity at finite strains[J]. International Journal of Plasticity, 2013, 46:37-53.
[176] VAN HOUTTE P, LI S, SEEFELDT M, et al. Defor-mation texture prediction: From the Taylor model to the advanced Lamel model[J]. International Journal of Plas-ticity, 2005, 21(3):589-624.
[177] KNEZEVIC M, MCCABE R J, LEBENSOHN R A, et al. Integration of self-consistent polycrystal plasticity with dislocation density based hardening laws within an implicit finite element framework: Application to low-symmetry metals[J]. Journal of the Mechanics and Phys-ics of Solids, 2013, 61(10):2034-2046.
[178] KABIRIAN F, KHAN A S, PANDEY A. Negative to positive strain rate sensitivity in 5xxx series aluminum alloys: Experimental and constitutive modeling[J]. Inter-national Journal of Plasticity, 2014, 55:232-246.
[179] LEBENSOHN R A. N-site modeling of a 3D visco-plastic polycrystal using fast fourier transform[J]. Acta Materialia, 2001, 49(14):2723-2737.
[180] LIU G Z, ZHOU D, GUO J M, et al. Numerical simula-tion of fatigue crack propagation interacting with micro-defects using multiscale XFEM[J]. International Journal of Fatigue, 2018, 109:70-82.
[181] TANG X S. Scatter of fatigue data owing to material microscopic effects[J]. Science China, 2014, 1:96-103.
[182] 李明, 刘扬, 唐雪松. 疲劳裂纹的跨尺度分析[J]. 浙江大学学报(工学版), 2017, 51(3):524-530.
LI M, LIU Y, TANG X S. Cross scale analysis of fatigue crack [J]. Journal of Zhejiang University (Engineering Edition), 2017, 51 (3): 524-530(in Chinese).
[183] SUN B , LI Z X. A multi-scale damage model for fatigue accumulation due to short cracks nucleation and growth[J]. Engineering Fracture Mechanics, 2014, 127:280-295.
[184] YE S , ZHANG C C, ZHANG P Y, et al. Fatigue life prediction of nickel-based GH4169 alloy on the basis of a multi-scale crack propagation approach[J]. Engineering Fracture Mechanics, 2018, 199:29-40.
[185] 胡自力, 熊克, 杨红. 基于智能材料结构的几种损伤评价方法[J]. 航空学报, 2002, 23(1):1-5.
HU Z L, XIONG K, YANG H. Several damage assess-ment methods based on intelligent material structure [J]. Acta Aeronautica et Astronautica Sinica, 2002, 23 (1): 1-5(in Chinese).
[186] 张福泽. 飞机疲劳寿命单机监控各个节点的判据式和相应的类比计算模型[C]. 第16届全国疲劳与断学术会议, 2012.
ZHANG F Z. Criterion formula and corresponding anal-ogy calculation model of aircraft fatigue life monitoring nodes [C]. 16th National Conference on fatigue and frac-ture, 2012(in Chinese).
[187] 张立新, 钟顺录, 刘小冬, 等. 战斗机强度设计技术发展与实践[J]. 航空学报, 2019, 38(x). doi:10.7527/S1000-6893.2019.23480.
ZHANG L X, ZHONG S L, LIU X D, et al. Develop-ment and practice of fighter strength design technology [J]. Acta Aeronautica et Astronautica Sinica, 2019, 38 (x). Doi: 10.75277s1000-6893.2019.23480(in Chinese).
[188] 张福泽.金属机件腐蚀损伤日历寿命的计算模型和确定方法[J].航空学报,1999,20(1):75-79
ZHANG F Z. Calculation model and determination method of calendar life for corrosion damage of metal parts [J]. Acta Aeronautica et Astronautica Sinica, 1999,20 (1): 75-79(in Chinese).
[189] 张福泽.金属腐蚀“3等线”和试验日历寿命确定方法[J].航空学报,2016,37(2):371-380.
ZHANG F Z. Determination method of "3-isoline" and test calendar life of metal corrosion [J]. Acta Aeronautica et Astronautica Sinica, 2016,37 (2): 371-380(in Chinese).
[190] 张福泽.飞机日历翻修期与总日历寿命确定方法和预计公式[J].航空学报,2005,26(4):458-460.
ZHANG F Z. Determination method and prediction formula of aircraft calendar overhaul period and total calendar life [J]. Acta Aeronautica Sinica, 2005,26 (4): 458-460(in Chinese).
[191] 张福泽.三维等损伤环境谱的编制原理和方法[J].航空学报,2016,37(2):381-389.
ZHANG F Z. Compilation principle and method of three-dimensional equal damage environmental spectrum [J]. Acta Aeronautica et Astronautica Sinica, 2016,37 (2): 381-389(in Chinese).
[192] 张福泽. 金属任意腐蚀损伤量的日历寿命计算模型和曲线[J]. 航空学报, 2017, 38(9):221110.
ZHANG F Z. Calculation model and curve of calendar life for arbitrary corrosion damage of metals [J].Acta Aeronautica et Astronautica Sinica, 2017, 38 (9): 221110(in Chinese).
[193] 何宇廷, 高潮, 张腾, 等. 飞机结构疲劳/耐久性安全寿命延寿方法[J]. 空军工程大学学报(自然科学版), 2015, 16(6):1-6.
HE Y T, GAO F, ZHANG T, et al. Fatigue durability safety life extension method of aircraft structure [J]. Journal of Air Force Engineering University (NATURAL SCIENCE EDITION), 2015, 16 (6): 1-6(in Chinese).
[194] 杨晓华, 金平, 陈跃良, 等. 飞机空中使用环境谱的编制[J]. 航空学报, 2008, 1:90-95.
YANG X H, JIN P, CHEN Y L, et al. Compilation of air-craft air environment spectrum [J]. Acta Aeronautica et Astronautica Sinica, 2008, 1:90-95(in Chinese).
文章导航

/