管路中常温推进剂的两相充填特性仿真研究

  • 任孝文 ,
  • 李平 ,
  • 陈宏玉 ,
  • 周晨初
展开
  • 1. 西安航天动力研究所
    2. 中国航天推进技术研究院

收稿日期: 2020-12-03

  修回日期: 2021-02-02

  网络出版日期: 2021-02-08

基金资助

液体火箭发动机技术重点实验室开放基金

Simulation of two-phase filling characteristics of storable propellant in pipeline

  • REN Xiao-Wen ,
  • LI Ping ,
  • CHEN Hong-Yu ,
  • ZHOU Chen-Chu
Expand

Received date: 2020-12-03

  Revised date: 2021-02-02

  Online published: 2021-02-08

摘要

常温推进剂在管路中的两相充填特性由于气液两相的相互作用而难以预测。为拓展液体火箭发动机瞬态特性模块化通用仿真模型库对两相充填的仿真能力,基于Modelica模块化建模思想开发了一维有限体积的两相充填管路模型,其中采用等效流容方法计算压力,使用VOF法捕捉气液界面。对流项离散格式的比较表明,TVD_QUICK格式可同时满足系统仿真对准确性和实时性的要求。对节流孔径的研究表明,在不同的节流孔径比范围内,液体对预存气体管路的充填过程可分为水击效应忽略、水击效应微弱以及水击效应主导三种模式,且最大水击压力峰值一般发生在水击效应主导模式下。此外,夹带有单个气柱的常温推进剂在充填过程中表现出的压力震荡主要由两个因素造成:其一为气柱受到上下游液柱的压缩而产生的压力波动,其二为气柱下游液柱在节流元件位置产生的水击压力震荡,两种压力波动的耦合作用下,管内水击压力峰值达到上游供应压力的5倍左右。

本文引用格式

任孝文 , 李平 , 陈宏玉 , 周晨初 . 管路中常温推进剂的两相充填特性仿真研究[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2020.25047

Abstract

The two-phase filling characteristics of the storable propellant in the pipeline are difficult to predict due to the interaction of gas and liquid. In order to expand the simulation capabilities of the modular general simulation library for liquid rocket engine transient char-acteristics for two-phase filling, a one-dimensional finite volume two-phase filling pipeline model is developed based on the Modeli-ca modular modeling idea, in which the equivalent fluid capacity method is used to calculate the pressure, and the VOF method is adopted to capture the gas-liquid interface. The comparison of the discrete formats of advection terms shows that the TVD_QUICK scheme can guarantee the accuracy and real-time performance simultaneously for system simulation. The research on the orifice di-ameter shows that the filling process of the liquid to the pre-existing gas pipeline can be divided into three modes within the range of different throttle aperture ratio, namely, negligible water hammer effect, mitigate water hammer effect and dominant water hammer effect, and the peak pressure of water hammer generally occurs in the mode of dominant water hammer effect. In addition, the pres-sure shock shown by the storable propellant with a single gas column in the filling process is mainly caused by two factors: one is the pressure fluctuation of gas column compressed by the upstream and downstream liquid column, the other is the water hammer pressure shock generated by the liquid column downstream of the air column at the position of the throttle element. With the coupling of the two pressure fluctuations, the peak water hammer pressure in the pipe reaches about 5 times the upstream supply pressure.

参考文献

[ ] ZHOU F, HICKS F E, STEFFLER P M. Obser-vations of air–water interaction in a rapidly filling horizontal pipe[J]. Journal of Hydraulic Engineer-ing, 2002, 128(6): 635-639.
[ ] 程谋森, 张育林. 航天器推进系统管路充填过程动态特性(1)理论模型与仿真结果[J]. 推进技术, 2000(2): 25-28.
CHENG M S, ZHANG Y L. Dynamic characteristics of priming process in spacecraft propulsion system (1) Theoretical model and simulation results[J]. Journal of Propulsion Technology, 2000(2): 25-28(in Chinese).
[ ] 程谋森, 张育林. 推进剂供应管路充填过程研究[J]. 推进技术, 1997, 18(2): 70-74.
CHENG M S, ZHANG Y L. An analysis on prepres-surized and evacuated feedline priming process[J]. Journal of Propulsion Technology, 1997, 18(2): 70-74(in Chinese).
[ ] HATCHER T M, Vasconcelos J G. Peak pressure surges and pressure damping following sudden air pocket compression[J]. Journal of Hydraulic Engi-neering, 2017, 143(4): 04016094.
[ ] 刘昆, 张育林. 液体推进系统充填过程的有限元状态变量模型[J]. 推进技术, 2001, 22(1): 19-21.
LIU K, ZHANG Y L. Finite element state-variable models for the priming process of feed lines[J]. Journal of Propulsion Technology, 2001, 22(1): 19-21(in Chinese).
[ ] 陈宏玉,刘红军,陈建华,等. 基于谱方法的管路充填过程仿真[J]. 航空动力学报,2012, 27(9): 2134-2139.
CHEN H Y, LIU H J, CHEN J H, et al. Investiga-tion of priming process of propellant lines using Fourier spectral method[J]. Journal of Aerospace Power, 2012, 27(9): 2134-2139(in Chinese).
[ ] 陈宏玉,刘红军,刘上. 推进剂管路充填过程的数值模拟[J]. 航空动力学报, 2013, 28(3): 561-566.
CHEN H Y, LIU H J, LIU S, et al. Numerical simu-lation of priming process of propellant pipelines[J]. Journal of Aerospace Power, 2013, 28(3): 561-566(in Chinese).
[ ] 秦艳平, 梁俊龙, 李斌, 等. 基于有限差分 WENO 格式的推进剂供应管路充填特性研究[J]. 推进技术, 2016, 37(9): 1759-1765.
QIN Y P, LIANG J L, LI B, et al. Priming behaviors in propellant feedline analysis based on high order finite different WENO scheme[J]. Journal of Pro-pulsion Technology, 2016, 37(9): 1759-1765(in Chinese).
[ ] ZHOU L, LIU D Y, OU C. Simulation of flow transients in a water filling pipe containing en-trapped air pocket with VOF model[J]. Engineering Applications of Computational Fluid Mechanics, 2011, 5(1): 127-140.
[ ] LIU D Y, ZHOU L. Numerical simulation of transient flow in pressurized water pipeline with trapped air mass[C]// Wuhan, China : Asia-Pacific Power and Energy Engineering Conference, 2009.
[ ] BANDYOPADHYAY A, HAMILL B. Network flow simulation of fluid transients in rocket propul-sion systems[J]. Journal of Propulsion and Power, 2014, 30(6): 1646-1653.
[ ] ZHOU L, LIU D Y, KARNEY B. Investigation of hydraulic transients of two entrapped air pockets in a water pipeline[J]. Journal of Hydraulic Engi-neering, 2013, 139: 949-959.
[ ] MARTIN C S. Entrapped air in pipelines[C]// London : 2nd International Conference on Pressure Surges. 1976.
[ ] DE MARTINO G, GIUGNI M, VIPARELLI M, et al. Pressure surges in water mains caused by air release[C]// Bury St.Edmunds : 8th International Conference on Pressure Surges, 2000.
[ ] MARTIN C S, LEE N H. Rapid expulsion of entrapped air through an orifice[C]// Bury St.Edmunds : 8th International Conference on Pres-sure Surges, 2000.
[ ] BUCUR D M, DUNCA G, CERVANTES M. Maximum pressure evaluation during expulsion of entrapped air from pressurized pipelines[J]. Journal of Applied Fluid Mechanics, 2017,10(1): 11-20.
[ ] TIJSSELING A S, HOU Q, BOZKU? Z. Rapid liquid filling of a pipe with venting entrapped gas: analytical and numerical solutions[J]. Journal of Pressure Vessel Technology, 2019, 141(4):041301.
[ ] Modelica Association. Modelica Librar-ies[EB/OL].(2020-06-05)[2020-12-01] http://www.modelica.org/libraries
[ ] 陈宏玉, 刘红军, 陈建华. 补燃循环发动机强迫起动过程[J]. 航空动力学报, 2015, 30(12):3010-3016.
CHEN H Y, LIU H J, CHEN J H. Forced start-up procedure of a staged combustion cycle engine[J]. Journal of Aerospace Power, 2015, 30(12):3010-3016(in Chinese).
[ ] 赵建军, 丁建完, 周凡利, 等. Modelica语言及其多领域统一建模与仿真机理[J]. 系统仿真学报, 2006, 18(2): 570-573.
ZHAO J J, DING J W, ZHOU F L, et al. Modelica and its mechanism of multi-domain unified model-ing and simulation[J]. Journal of System Simulation, 2006, 18(2): 570-573(in Chinese).
[ ] ZHOU F L. Research on compiling and solving of the unified multi-domain model for engineering systems[D]. Wuhan: Huazhong University of Sci-ence and Technology, 2011(in Chinese).
[ ] ABREU J, CABRERA E, GARCíA S J, et al. Influence of trapped air pockets in pumping sys-tems[C]// Boston: 4th International Conference of Hydraulic Engineering, 1992.
[ ] CABRERA E, ABREU J, PEREZ R, et al. In-fluence of liquid length variation in hydraulic tran-sients[J]. Journal of Hydraulic Engineering, 118(12): 1639–1650.
[ ] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free bounda-ries[J]. Journal of Computational Physics, 1981, 39(1): 201-225.
[ ] CHAUDHRY M H. Applied hydraulic transi-ents [M]. New York: Springer Science & Business Media, 2013.
[ ] 任孝文, 陈宏玉, 李平, 等. 弱可压缩流体与可压缩流体模型的管路水击研究[J].推进技术, 2020 ,41(8):1880-1886.
REN X W, CHEN H Y, LI P, et al. Investigation on water hammer in pipes by slightly compressible flu-id model and compressible fluid model[J]. Journal of Propulsion Technology, 2020 ,41(8):1880-1886(in Chinese).
[ ] REN X W, LI P, CHEN H Y. Numerical simu-lation of water hammer in liquid methane feedline based on two compressible fluid mod-els[J].Cryogenics, 2020, 109: 103122.
[ ] 陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2001.
TAO W Q. Numerical heat transfer[M]. Xi’an: Xi’an Jiaotong University Press, 2001(in Chinese).
[ ] 张凯宏, 江欣, 肖明杰, 等.基于流固耦合理论的关机水击特性[J].火箭推进, 2019, 45(02):36-43.
ZHANG K H, JIANG X, XIAO M J. Characteristics of water hammer in shutting based on FSI[J]. Jour-nal of Rocket Propulsion, 2019, 45(02):36-43(in Chinese).
[ ] 汪洪波, 吴海燕, 谭建国. 推进系统动力学[M]. 北京: 科学出版社, 2018.
WANG H B, WU H Y, TAN J G. Dynamics of pro-pulsion systems[M]. Beijing: SciencePress, 2018(in Chinese).
[ ] PETZOLD L R. Description of DASSL: A dif-ferential/algebraic system solver: SAND82-8637[R]. 10th IMACS World Congress, 1982.
[ ] VERSTEEG H K, MALALASEKERA W. An introduction to computational fluid dynamics: the finite volume method[M]. UK: Pearson Education, 2007.
[ ] 陈宏玉. 液氧煤油发动机瞬变过程分布参数建模与仿真研究[D].西安: 西安航天动力研究所, 2013.
CHEN H Y. Investigation on the distributed parame-ter modeling and simulation of transient characteris-tics for a LOX/Kerosene rocket engine[D]. Xi’an: Xi’an Aerospace Propulsion Institute, 2013(in Chi-nese).
[ ] ZHOU F, HICKS F E, STEFFLER P M. Tran-sient flow in a rapidly filling horizontal pipe con-taining trapped air[J]. Journal of Hydraulic Engi-neering, 2002, 128(6): 625-634.
[ ] 任孝文, 李平, 陈宏玉, 等. 预存气体闭端管路的充填水击特性研究[J].推进技术. 2020, 41(12): 2700-2708.
REN X W, LI P, CHEN H Y, et al. Investigation on water hammer during the priming of closed conduit with entrapped air[J] Journal of Propulsion Tech-nology, 2020, 41(12): 2700-2708(in Chinese).
文章导航

/