先进航空材料焊接/连接专栏

TiB2-TiC-SiC复合陶瓷接触反应钎焊接头界面组织及力学性能

  • 蔡小强 ,
  • 王东坡 ,
  • 王颖 ,
  • 杨振文
展开
  • 天津大学 天津市现代连接技术重点实验室, 天津 300072

收稿日期: 2020-11-23

  修回日期: 2020-12-21

  网络出版日期: 2021-02-08

基金资助

国家自然科学基金(52175357);天津市科技计划(19ZXJRGX00100)

Interfacial microstructure and mechanical properties of TiB2-TiC-SiC ceramics joints fabricated by contact reactive brazing technique

  • CAI Xiaoqiang ,
  • WANG Dongpo ,
  • WANG Ying ,
  • YANG Zhenwen
Expand
  • Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin 300072, China

Received date: 2020-11-23

  Revised date: 2020-12-21

  Online published: 2021-02-08

Supported by

National Natural Science Foundation of China (52175357); Science and Technology Program of Tianjin (19ZXJRGX00100)

摘要

采用Ti-Ni中间层体系对TiB2-TiC-SiC (TTS)复合陶瓷进行了钎焊连接,研究不同的钎料成分和保温时间对接头界面组织和力学性能的影响。结果表明:钎料成分变化会引起界面反应机制由Ti与TTS复合陶瓷反应为主的过程向Ni与TTS复合陶瓷反应为主的过程转变。采用Ti-24at% Ni钎料钎焊TTS复合陶瓷时,界面反应主要发生在Ti与TTS复合陶瓷之间,反应产物主要为Ti与TiB2反应形成的TiB以及与SiC反应形成的TiC和Ti5Si3。采用Ti-83at% Ni钎料钎焊TTS复合陶瓷时,界面反应主要发生在Ni与TTS复合陶瓷之间,尤其是与SiC的反应,反应产物主要为Ni2Si和C。此外,保温时间显著影响TTS/Ti-24at% Ni/TTS接头的界面组织和力学性能。随着保温时间的延长,接头中连续的Ti2Ni化合物消失,形成大量的TiB和Ti5Si3。与此同时,TTS复合陶瓷侧界面反应层逐渐增厚。在钎焊温度为1 040℃,保温时间为30 min条件下,采用Ti-24at% Ni钎料钎焊TTS复合陶瓷获得的接头室温抗剪强度最大,达到168±10 MPa,高温(800℃)抗剪强度达到81±18 MPa。

本文引用格式

蔡小强 , 王东坡 , 王颖 , 杨振文 . TiB2-TiC-SiC复合陶瓷接触反应钎焊接头界面组织及力学性能[J]. 航空学报, 2022 , 43(2) : 625006 -625006 . DOI: 10.7527/S1000-6893.2021.25006

Abstract

Ti-Ni brazing alloy is successfully used to braze the TiB2-TiC-SiC (TTS) composite ceramic. The influence of change in Ti-Ni brazing alloy composition and brazing time on the interface microstructure and mechanical properties of the joint is studied. The results show that the change of Ti-Ni brazing alloy composition caused the interface reaction to change from a process dominated by the reaction of Ti and TTS ceramic to a process dominated by the reaction of Ni and TTS ceramic. When TTS ceramic is brazed using Ti-24at%Ni brazing alloy, the interface reaction mainly occurred in Ti and TTS ceramic, and the reaction products were TiB2, TiC and Ti5Si3. When TTS ceramic is brazed using Ti-83at%Ni brazing alloy, the interface reaction, especially the reaction with SiC, mainly occurred in Ni and TTS composite ceramics, and the reaction products are mainly Ni2Si and C. With an increase in the brazing temperature, the continuous Ti2Ni layer in the brazing seam gradually disappeared, and is replaced by TiB and Ti5Si3. In addition, the thickness of the reaction layer increased with the increase of the brazing temperature. The maximum shear strength of the joint achieved at room temperature was 168±10 MPa when the TTS ceramic joint was brazed using Ti-24at%Ni brazing alloy at 1040℃ for 30 min, whereas it was 81±18 MPa when the joint is tested at 800℃.

参考文献

[1] FAHRENHOLTZ W G, HILMAS G E. Ultra-high temperature ceramics:Materials for extreme environments[J].Scripta Materialia, 2017, 129:94-99.
[2] RAN S L, ZHANG L, VAN D B O, et al. Pulsed electric current, in situ synthesis and sintering of textured TiB2 ceramics[J].Journal of the European Ceramic Society, 2010, 30(4):1043-1047.
[3] HUANG X G, YIN C, HUANG J, et al. Hypervelocity impact of TiB2-based composites as front bumpers for space shield applications[J].Materials & Design, 2016, 97:473-482.
[4] KONIGSHOFER R, FURNSINN S, STEINKELLNER P, et al. Solid-state properties of hot-pressed TiB2 ceramics[J].International Journal of Refractory Metals & Hard Materials, 2005, 23(4-6):350-357.
[5] VALLAURI D, ADRIAN I C A, CHRYSANTHOU A. TiC-TiB2 composites:A review of phase relationships, processing and properties[J].Journal of the European Ceramic Society, 2008, 28(8):1697-1713.
[6] 黄安琪,朱时珍,刘玲, 等. 添加TiB2对SiC基复相陶瓷显微结构和力学性能的影响[J].硅酸盐学报, 2017, 45(7):924-929. HUANG A Q, ZHU S Z, LIU L, et al. Influence of adding TiB2 on structure and mechanical properties of SiC-based composite ceramics[J].Journal of the Chinese Ceramic Society, 2017, 45(7):924-929(in Chinese).
[7] DEMESTRAL F, THEVENOT F. Ceramic composites TiB2-TiC-SiC[J].Journal of Materials Science, 1991, 26(20):5561-5565.
[8] KING D S, HILMAS G E, FAHRENHOLTZ, et al. Plasma arc welding of TiB2-20vol%TiC[J].Journal of the American Ceramic Society, 2014, 97(1):56-59.
[9] HE P, YANG W Q, LIN T S, et al. Diffusion bonding of ZrB2-SiC/Nb with in situ synthesized TiB whiskers array[J].Journal of the European Ceramic Society, 2012, 32(16):4447-4454.
[10] 陈铮, 赵其章, 楼宏青, 等. 用Ti/Ni/Ti多层中间层进行Si3N4陶瓷的部分瞬间液相连接[J].硅酸盐学报, 1998, 26:34-40. CHEN Z, ZHAO Q Z, LOU H Q, et al. Partial transient liquid phase bonding if Si3N4 with Ti/Ni/Ti multi-interlayer[J].Journal of the Chinese Ceramic Society, 1998, 26:34-40(in Chinese).
[11] 张丽霞, 雷敏, 杨智烨, 等. AgCuNiLi钎焊TiC金属陶瓷与GH3128界面结构及接头性能[J].稀有金属材料与工程, 2017, 46(11):3410-3414. ZHANG L X, LEI M, YANG Z Y, et al. Interfacial Microstructure and Properties of TiC Cermet and GH3128 Joint Brazed Using AgCuNiLi[J].Rare Metal Materials and Engineering, 2017, 46(11):3410-3414(in Chinese).
[12] 杨卫岐, 何鹏, 林铁松, 等. 原位TiB增强ZrB2-SiC接头的界面组织和力学性能[J].稀有金属材料与工程, 2014, 43(4):901-905. YANG W Q, HE P, LIN T S, et al. Interfacial microstructure and properties of in-situ TiB reinforced ZrB2-SiC joints[J].Rare Metal Materials and Engineering, 2014, 43(4):901-905(in Chinese).
[13] 王颖,夏永红,杨振文, 等. Ti3SiC2陶瓷与TC4合金钎焊接头微观组织及性能[J].稀有金属材料与工程, 2019, 48(9):3041-3047. YANG Y, XIA Y H, YANG Z W, et al. Interfacial microstructure and properties of brazed joints of Ti3SiC2 ceramic and TC4 alloy[J].Rare Metal Materials and Engineering, 2019, 48(9):3041-3047(in Chinese).
[14] 卞红,胡胜鹏,宋晓国, 等. 钎焊温度对Ti60/AgCu/ZrO2接头界面组织及性能影响[J].航空学报, 2017, 38(12):421402. BIAN H, HU S P, SONG X G, et al. Effect of brazing temperature on interfacial microstructure and mechanical property of Ti60/AgCu/ZrO2 joint[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(12):421402(in Chinese).
[15] 牛国宾,王东坡,杨振文, 等. Al2O3陶瓷与TiAl合金真空钎焊接头界面组织及性能[J].稀有金属材料与工程, 2017, 46(11):3282-3287. NIU G B, WANG D P, YANG Z W, et al. Interfacial structure and properties of Al2O3 ceramic and TiAl alloy brazed joints[J].Rare Metal Materials and Engineering, 2017, 46(11):3282-3287(in Chinese).
[16] SHIUE R K, WU S K, CHEN S Y, et al. Infrared brazing of TiAl intermetallic using BAg-8 braze alloy[J].Acta Materialia, 2003, 51(7):1991-2004.
[17] 徐晓龙,李卓然,刘睿华, 等. ZrB2-SiC陶瓷复合材料钎焊接头界面组织及性能[J].焊接学报, 2014, 35(1):59-62. XU X L,LI Z R,LIU R H, et al. Microstructure and mechanical properties of ZrB2-SiC ceramic composite brazed joint[J].Transactions of the China Welding Institution, 2014, 35(1):59-62(in Chinese).
[18] YANG W Q, LIN T S, HE P, et al. Microstructure and mechanical properties of ZrB2-SiC joints fabricated by a contact-reactive brazing technique with Ti and Ni interlayers[J].Ceramics International, 2014, 40(5):7253-7260.
[19] YANG W Q, XING L L, LIN T S, et al. Microstructural evolution and growth/degradation behavior of in situ TiB whiskers in ZrB2-SiC joints using Ti/Ni/Ti filler[J].Journal of Alloys and Compounds, 2018, 744:124-131.
[20] 宋昌宝,林铁松,何鹏, 等. Ti-Ni钎料钎焊连接ZrC-SiC复合陶瓷接头的界面组织[J].硅酸盐学报, 2013, 41(3):298-302. SONG C B,LIN T S,HE P, et al. Microstructure of ZrC-SiC composite ceramic joint vacuum brazed with Ti-Ni filler metal[J].Journal of the Chinese Ceramic Society, 2013, 41(3):298-302(in Chinese).
[21] 刘佳音. Pd-Co基钎料钎焊ZrB2-SiC复合陶瓷的工艺与机理研究[D]. 哈尔滨:哈尔滨工业大学, 2013:28-58. LIU J Y. Brazing progress and mechanism of ZrB2-SiC composite ceramic using Pd-Co-based filler[D]. Harbin:Harbin Institute of Technology, 2013:28-58(in Chinese).
[22] CACCIAMANI G, RIANI P, VALENZA F, et al. Equilibrium between MB2(M=Ti, Zr, Hf) UHTC and Ni:A thermodynamic database for the B-Hf-Ni-Ti-Zr system[J].Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2011, 35(4):601-619.
[23] WEINBERGER C R, THOMPSON G B. Review of phase stability in the group IVB and VB transition-metal carbides[J].Journal of the American Ceramic Society, 2018, 101(10):4401-4424.
[24] ZHANG Y K, LEI Y, MA W H, et al. Preparation of high-purity Ti-Si alloys by vacuum directional solidification[J].Journal of Alloys and Compounds, 2020, 832:153989.
[25] LU W J, ZHANG D, ZHANG X N, et al. Microstructural characterization of TiB in in situ synthesized titanium matrix composites prepared by common casting technique[J].Journal of Alloys and Compounds, 2001, 327(1-2):240-247.
[26] FENG H B, ZHOU Y, JIA D C, et al. Growth mechanism of in situ TiB whiskers in spark plasma sintered TiB/Ti metal matrix composites[J].Crystal Growth & Design, 2006, 6(7):1626-1630.
[27] OTSUKA K, REN X. Physical metallurgy of Ti-Ni-based shape memory alloys[J].Progress in Materials Science, 2005, 50(5):511-678.
[28] YOSHIHITO O, TABAIAN S H, MASAFUMI M. Rates of evaporation in a vacuum in liquid Ni-Ti alloys[J].ISIJ International, 1998, 38(8):789-793.
[29] GOGEBAKAN M, KURSUN C, GUNDUZ K O, et al. Microstructural and mechanical properties of binary Ni-Si eutectic alloys[J].Journal of Alloys and Compounds, 2015, 643:S219-S225.
[30] KEITA A S, WANG Z, SIGLE W, et al. Interfacial reactions of crystalline Ni and amorphous SiC thin films[J].Journal of Materials Science, 2018, 53(9):6681-6697.
[31] SHI H J, CHAI Y D, LI N, et al. Interfacial reaction mechanism of SiC joints joined by pure nickel foil[J].Journal of the European Ceramic Society, 2020, 40(15):5162-5171.
[32] TOPREK D, BELOSEVIC-CAVOR J, KOTESKI V, et al. Ab initio studies of the structural, elastic, electronic and thermal properties of NiTi2 intermetallic[J].Journal of Physics and Chemistry of Solids, 2015, 85:197-205.
[33] CHANDRAN K S R, PANDA K B, SAHAY S S. TiBw-reinforced Ti composites:Processing, properties, application prospects, and research needs[J].JOM,2004,56(5):42-48.
文章导航

/