综述

飞行器水载荷结构完整性数值模拟现状与展望-Part I:水上迫降和水上漂浮

  • 童明波 ,
  • 陈吉昌 ,
  • 李乐 ,
  • 肖天航 ,
  • 古彪 ,
  • 董登科 ,
  • 汪正中
展开
  • 1. 南京航空航天大学 航空学院, 南京 210016;
    2. 中国特种飞行器研究所, 荆门 448035;
    3. 中国飞机强度研究所, 西安 710065;
    4. 中国直升机设计研究所, 景德镇 333001

收稿日期: 2020-07-11

  修回日期: 2020-12-05

  网络出版日期: 2021-02-08

基金资助

国家自然科学基金(11672133);航空科学基金(20182352015,201928052009);江苏高校优势学科建设工程资助项目

State of the art and perspectives of numerical simulation of aircraft structural integrity from hydrodynamics-Part I: Ditching and floating

  • TONG Mingbo ,
  • CHEN Jichang ,
  • LI Le ,
  • XIAO Tianhang ,
  • GU Biao ,
  • DONG Dengke ,
  • WANG Zhengzhong
Expand
  • 1. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. China Special Vehicle Research Institute, Jingmen 448035, China;
    3. China Aircraft Strength Research Institute, Xi'an 710065, China;
    4. China Helicopter Research and Development Institute, Jingdezhen 333001, China

Received date: 2020-07-11

  Revised date: 2020-12-05

  Online published: 2021-02-08

Supported by

National Natural Science Foundation of China (11672133);Aeronautical Science Foundation of China(20182352015, 201928052009);A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要

现代飞行器面临水上迫降、水上漂浮、贮箱晃动和投汲水等复杂水载荷的结构完整性和乘员安全性分析问题日趋重要,随着科学技术的发展,数值模拟已经成为飞行器设计、分析和适航取证的重要手段。以固定翼飞机、水陆两栖飞机、直升机、火箭和卫星等现代航空航天飞行器为对象,围绕适用于飞行器水载荷分析的数值模拟方法进行综述,根据外流(水上迫降和水上漂浮)和内流(贮箱晃动和投汲水)的不同将综述内容分为Part I和Part II两部分。Part I的主要工作为:首先,归纳水上迫降和水上漂浮的事故和试验,总结水气两相流和流固耦合算法的发展现状和优缺点;随后,结合工程实际,介绍飞行器水上迫降和水上漂浮的范畴、水载荷分析要点、适用的数值模拟方法和软件的国内外发展情况,其中,水上迫降的总结包括飞行参数、波浪水面和弹性体对迫降性能的影响研究,水上漂浮的总结涵盖了飞行器构型参数、破舱和波浪对漂浮性能的影响研究;最后,指出复杂风浪情况下水上迫降和漂浮的水气固三相耦合工程应用难点和解决途径,并探讨飞行器水载荷数值分析的技术挑战和未来的发展方向。

本文引用格式

童明波 , 陈吉昌 , 李乐 , 肖天航 , 古彪 , 董登科 , 汪正中 . 飞行器水载荷结构完整性数值模拟现状与展望-Part I:水上迫降和水上漂浮[J]. 航空学报, 2021 , 42(5) : 524530 -524530 . DOI: 10.7527/S1000-6893.2021.24530

Abstract

The importance and requirements of structural integrity and passenger safety in aeronautics and astronautics communities have been strongly demonstrated in the past decades for series of scenarios, among which ditching, floating, sloshing and water dropping-scooping are closely related to both aerodynamics and hydrodynamics. To date, the numerical simulation technique has become one of the most powerful tools in the field of aircraft design and analysis due to the advanced technologies in terms of both hardware and algorithm. We provide a review of state-of-art numerical methods and applications in the above four typical aircraft scenarios that are dominated by hydrodynamic forces based on historic process knowledge. According to the difference of flow characteristics, that is outer flow or inner flow dominated, this review is divided into two parts Part I focuses on aircraft ditching and floating, and part II discusses sloshing and water dropping-scooping. In Part I, a literature investigation of the accidents and experiments of ditching and floating in the history of human aircraft usage is firstly presented, and the algorithms of two-phase interface and FSI (Flow-Structure Interaction) is then discussed. Secondly, based on practical engineering cases, we give the definition of ditching and floating and overview the past research on their physical processes, force analysis and corresponding algorithms and software developed in China and abroad.A detailed review of parameter influence of ditching and floating is then provided, including initial flight conditions, wave, flexible structural model, shape profile and progressive flooding. We finally specify the difficulties in the numerical simulation and applications of air-water-structure interaction in aircraft ditching and floating under the circumstances of wind and wave, which also reveals the technical difficulties and future development direction of the aircraft structural integrity from hydrodynamics perspective.

参考文献

[1] QU Q, LIU C, LIU P, et al. Numerical simulation of water-landing performance of a regional aircraft[J]. Journal of Aircraft, 2016, 53(6):1680-1689.
[2] LINDENAU O, RUNG T. Review of transport aircraft ditching accidents[C]//Stuttgart, 6th International KRASH Users' Seminar (IKUS6), 2009.
[3] BEA. Final report on the accident on 1 st June 2009 to the Airbus A330-203 registered F-GZCP operated by Air France flight AF 447 Rio de Janeiro-Paris[R]. Paris:BEA, 2012.
[4] Republic of Lebanon Ministry of Public Works & Transport. Investigation report on the accident to ethiopian 409-Boeing 737-800 registration ET-ANB at Beirut-Lebanon on 25th January 2010[R]. 17th IIC, 2012.
[5] The Malaysian ICAO Annex 13 Safety Investigation Team for MH370. Safety investigation report Malaysia Airlines Boeing B777-200ER (9M-MRO) 08 March 2014[R]. Malaysian Ministry of Transport, 2018.
[6] Komite Nasional. Aircraft accident investigation report. PT. Lion Airlines Boeing 737(MAX)[R]. National Transportation Safety Committee (NTSC), 2018.
[7] 申蒸洋, 陈孝明, 黄领才. 大型水陆两栖飞机特殊任务模式对总体设计的挑战[J]. 航空学报, 2019, 40(1):522400. SHEN Z Y, CHEN X M, HUANG L C. Challenges for aircraft design due to special mission models of large-scale amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522400(in Chinese).
[8] 黄领才, 雍明培. 水陆两栖飞机的关键技术和产业应用前景[J]. 航空学报, 2019, 40(1):522708. HUANG L C, YONG M P. Key technologies and industrial application prospects of amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522708(in Chinese).
[9] COLTMAN J W, ARND S M. The naval aircraft crash environment:Aircrew survivability and aircraft structural response:TR-88490[R]. Simula Inc Phoenix Az, 1988.
[10] MULLER M, GREENWOOD R, RICHARDS M, et al. Survey and analysis of rotorcraft flotation systems[R]. Egg Harbor Township:Galaxy Scientific Corp, 1996.
[11] HUGHES K, CAMPBELL J. Helicopter crashworthiness:A chronological review of research related to water impact from 1982 to 2006[J]. Journal of the American Helicopter Society, 2008, 53(4):429-441.
[12] Safety Regulation Group. CAA paper 2005/06:Summary report on helicopter ditching and crashworthiness research[R]. Civil Aviation Authority, 2005.
[13] TABER M, MCCABE J. An examination of survival rates based on external flotation devices:A helicopter ditching review from 1971 to 2005[J]. SAFE Journal, 2007, 35(1):1-6.
[14] BROOKS C J, MACDONALD C V, DONATI L, et al. Civilian helicopter accidents into water:Analysis of 46 cases, 1979-2006[J]. Aviation, Space, and Environmental Medicine, 2008, 79(10):935-940.
[15] BROOKS C J, MACDONALD C V, BAKER S P, et al. Helicopter crashes into water:Warning time, final position, and other factors affecting survival[J]. Aviation, Space, and Environmental Medicine, 2014, 85(4):440-444.
[16] SEDDON C M, MOATAMEDI M. Review of water entry with applications to aerospace structures[J]. International Journal of Impact Engineering, 2006, 32(7):1045-1067.
[17] CLIMENT H, BENITEZ L, ROSICH F, et al. Aircraft ditching numerical simulation[C]//25th International Congress of the Aeronautical Sciences, 2006:1-16.
[18] IAFRATI A, GRIZZI S, SIEMANN M H, et al. High-speed ditching of a flat plate:Experimental data and uncertainty assessment[J]. Journal of Fluids and Structures, 2015, 55:501-525.
[19] CLIMENT H, PASTOR G, VIANA J T. Experimental ditching loads on aeronautical flexible structures[C]//Proceedings of the International Forum of Aeroelasticity and Structural Dynamics IFASD, 2017.
[20] SEILER J, LOZOYA J, ESPINOSA M, et al. D4.2:Numerical simulation of energy absorbing concepts for ditching[R]. Increased Safety & Robust Certification for Ditching of Aircrafts & Helicopters (SARAH), 2016.
[21] SEILER J, LOZOYA J, ESPINOSA M, et al. D4.3:Report on design solutions to increase safety during ditching with respect to energy absorbing structures[R]. Increased Safety & Robust Certification for Ditching of Aircrafts & Helicopters (SARAH), 2016.
[22] SEILER J, ELISABETH B, BERTRAND P, et al. D4.5:Report on the impact of configurational changes on ditching loads and design risk mitigations[R]. Increased Safety & Robust Certification for Ditching of Aircrafts & Helicopters (SARAH), 2016.
[23] YANG X, MA J, WEN D S,et al. Crashworthy design and energy absorption mechanisms for helicopter structures:A systematic literature review[J]. Progress in Aerospace Sciences, 2020, 114:100618.
[24] MOU H, XIE J, FENG Z. Research status and future development of crashworthiness of civil aircraft fuselage structures:An overview[J]. Progress in Aerospace Sciences, 2020, 119:100644.
[25] DIAS F, GHIDAGLIA J M. Slamming:Recent progress in the evaluation of impact pressures[J]. Annual Review of Fluid Mechanics, 2018, 50:243-273.
[26] ALCDO A M. Design and testing of float landing gear systems for helicopters[J]. Journal of the American Helicopter Society, 1980, 25(3):3-9.
[27] REILLY M J. Lightweight emergency flotation system for the CH-46 helicopter:NADC-79169-60[R]. Philadelphia:Boeing Vertol Co, 1981.
[28] WILSON F T, TUCKER R C S. Ditching and flotation characteristics of the EH101 helicopter[C]//Thirteenth European Rotorcraft Forum, 1987.
[29] L DELORME ETVDO. EASA. 2007. C16 Study on helicopter ditching and crashworthiness[R]. Euro Copter an EADS Company, 2007.
[30] CHEN Y H,WU X M,YUAN L B. Experimental research on the helicopter sliding stability after ditching[C]//IOP Conference Series:Materials Science and Engineering. IOP Publishing,2018, 449(1):12-24.
[31] 马中帆. 飞机水上漂浮特性的数值分析[D]. 武汉:武汉理工大学, 2013. MA Z F. Numerical analysis on floating characteristics of aircraft[D].Wuhan:Wuhan University of Technology,2013(in Chinese).
[32] 李名琦. 应急气囊着水冲击特性的试验研究与数值分析[D].南京:南京航空航天大学,2008. LI M Q. Numerical analysis and experimental research on ditching characteristic of emergence flotation bags[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2008(in Chinese).
[33] WANG Z Z,CHEN L X,SUO Q, et al. Test research on helicopter ditching load[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2017, 49(2):258-263.
[34] SULEIMAN B M. Identification of finite-degree-of-freedom models for ship motions[D]. Blacksburg:Virginia Polytechnic Institute and State University, 2000.
[35] KORVIN-KROUKOVSKY B V. Investigation of ship motions in regular waves[C]//Stevens Institute of Technology, Experimental Towing Tank, Annual Meeting of the Society of Naval Architects and Marine Engineers, 1955.
[36] NWEMAN J N. The theory of ship motions[M]. New York:Academic Press,1978, 18:221-283.
[37] KAPLAN P. A study of prediction techniques for aircraft carrier motions at sea[J]. Journal of Hydronautics, 1969, 3(3):121-131.
[38] 马采涅夫(苏). 船舶不沉性理论[M]. 北京:国防工业出版社, 1977. MATSENEV(S). Theory of ship insinuability[M]. Beijing:National Defense Industry Press, 1977(in Chinese).
[39] DANDY D S, LEAL L G. Buoyancy-driven motion of a deformable drop through a quiescent liquid at intermediate Reynolds numbers[J]. Journal of Fluid Mechanics, 1989, 208:161-192.
[40] MONAGHAN J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics, 1994, 110(2):399-406.
[41] UNVERDI S O, TRYGGVASON G. A front-tracking method for viscous, incompressible, multi-fluid flows[J]. Journal of Computational Physics, 1992, 100(1):25-37.
[42] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225.
[43] NOH W F, WOODWARD P. Simple line interface calculation[C]//Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics. Berlin Heidelberg:Springer-Verlag, 1976:330-340.
[44] YOUNGS D L. Time-dependent multi-material flow with large fluid distortion.In:Numerical methods in fluid dynamics[M]. Pittsburgh:Academic Press, 1982:273-285.
[45] RIDER W J, KOTHE D B. Reconstructing volume tracking[J]. Journal of Computational Physics, 1998, 141(2):112-152.
[46] LOPEZ J, HERNANDEZ J, GOMEZ P, et al. A volume of fluid method based on multidimensional advection and spline interface reconstruction[J]. Journal of Computational Physics, 2004, 195(2):718-742.
[47] PUCKETT E G. A volume-of-fluid interface tracking algorithm with applications to computing shock wave refraction[C]//Proceedings of the Fourth International Symposium on Computational Fluid Dynamics, 1991:933-938.
[48] PILLIOD J E. An analysis of piecewise linear interface reconstruction algorithms for volume-of-fluid methods[D]. Davis:University of California, 1992:1-182.
[49] AULISA E, MANSERVISI S, SCARDOVELLI R, et al. Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry[J]. Journal of Computational Physics, 2007, 225(2):2301-2319.
[50] UBBINK O, ISSA R I. A method for capturing sharp fluid interfaces on arbitrary meshes[J]. Journal of Computational Physics, 1999, 153(1):26-50.
[51] MUZAFERIJA S. A two-fluid Navier-Stokes solver to simulate water entry[C]//Proceedings of 22nd Symposium on Naval Architecture. Washington, D.C.:The National Academies Press, 1998:638-651.
[52] OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed:Algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1):12-49.
[53] SUSSMAN M, SMEREKA P, OSHER S. A level set approach for computing solutions to incompressible two-phase flow[J]. Journal of Computational Physics, 1994, 114(1):146-159.
[54] SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics, 1988, 77(2):439-471.
[55] LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1):200-212.
[56] SUSSMAN M, FATEMI E, SMEREKA P, et al. An improved level set method for incompressible two-phase flows[J]. Computers & Fluids, 1998, 27(5-6):663-680.
[57] MULER W, OSHER S, SETHIAN J A. Computing interface motion in compressible gas dynamics[J]. Journal of Computational Physics,1992,100(2):209-228.
[58] OLSSON E, GUNILLA K. A conservative level set method for two phase flow[J]. Journal of Computational Physics, 2005, 210(1):225-246.
[59] OLSSON E, KREISS G, ZAHEDI S. A conservative level set method for two phase flow II[J]. Journal of Computational Physics, 2007, 225(1):785-807.
[60] HERRMANN M. Refined level set grid method for tracking interfaces. In:Annual research briefs[M]. Stanford:Center for Turbulence Research, 2005:3-18.
[61] HERRMANN M. A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids[J]. Journal of Computational Physics, 2008, 227(4):2674-2706.
[62] HIEBER S E, KOUMOUTSAKOS P. A Lagrangian particle level set method[J]. Journal of Computational Physics, 2005, 210(1):342-367.
[63] ENRIGHT D, LOSASSO F, FEDKIW R. A fast and accurate semi-Lagrangian particle level set method[J]. Computers & Structures, 2005, 83(6-7):479-490.
[64] WANG Y, SIMAKHINA S, SUSSMAN M. A hybrid level set-volume constraint method for incompressible two-phase flow[J]. Journal of Computational Physics, 2012, 231(19):6438-6471.
[65] SUSSMAN M. A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles[J]. Journal of Computational Physics, 2003, 187(1):110-136.
[66] DOWELL E H, HALL K C. Modeling of fluid-structure interaction[J]. Annual Review of Fluid Mechanics, 2001, 33(1):445-490.
[67] MORAND H J P, OHAYON R. Fluid structure interaction-Applied numerical methods[M].New York:Wiley, 1995.
[68] HOU G, WANG J, LAYTON A. Numerical methods for fluid-structure interaction a review[J]. Communications in Computational Physics, 2012, 12(2):337-377.
[69] CROSETTO P, REYMOND P, DEPARIS S, et al. Fluid-structure interaction simulation of aortic blood flow[J]. Computers & Fluids, 2011, 43(1):46-57.
[70] HABCHI C, RUSSEIL S, BOUGEARD D, et al. Partitioned solver for strongly coupled fluid-structure interaction[J]. Computers & Fluids, 2013, 71:306-319.
[71] WOOD C, GIL A J, HASSAN O, et al. Partitioned block-Gauss-Seidel coupling for dynamic fluid-structure interaction[J]. Computers & Structures, 2010, 88(23-24):1367-1382.
[72] DEGROOTE J, BRUGGEMAN P, HAELTERMAN P, et al. Stability of a coupling technique for partitioned solvers in FSI applications[J]. Computers & Structures, 2008, 86(23-24):2224-2234.
[73] LANDAJUELA M, VIDRASCU M, CHAPELLE D, et al. Coupling schemes for the FSI forward prediction challenge:Comparative study and validation[J]. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33(4):e2813.
[74] JACKSON K, FASANELLA E. A survey of research performed at NASA Langley Research Center's impact dynamics research facility[C]//44th AIAA/ASME Structures, Structural Dynamics, and Materials Conference.Reston:AIAA, 2003:1896.
[75] 中国民用航空总局. CCAR-29 R1运输类旋翼航空器适航规定(113号令)[S]. 北京:中国民用航空规章, 2002. CAAC. CCAR25-R4 civil aviation regulations of the People's Republic of China, Part 29:Airworthiness standards for transport aircraft[S]. Beijing:CAAC, 2002(in Chinese).
[76] PATEL A A, GREENWOOD R P. Transport water impact and ditching performance:DOT/FAA/AR-95/54[R].Washington,D.C.:FAA, 1996.
[77] HUGHES K, VIGNJEVIC R, CAMPBELL J, et al. From aerospace to offshore:Bridging the numerical simulation gaps-Simulation advancements for fluid structure interaction problems[J]. International Journal of Impact Engineering, 2013, 61:48-63.
[78] DESJARDINS S P, LAANANEN D H. Aircraft crash survival design guides[M]. Usaavscom:Simula Inc. Phoenix, Az, 1989.
[79] PEREGRINE D H, THAIS L. The effect of entrained air in violent water wave impacts[J]. Journal of Fluid Mechanics, 1996, 325:377-397.
[80] FALTINSEN O M. Hydroelastic slamming[J]. Journal of Marine Science and Technology, 2000, 5(2):49-65.
[81] WAGNER H. Planning of watercraft:1139[R].Washington,D.C.:National Advisory Committee for Aeronautics (NACA), 1948.
[82] BUSCH C, LANGE N A. Ditching of aircrafts:Simulations and experimental investigation[C]//Ecole Centrale Marseille:Airbus/TUHH Presentation, 2007:1-29.
[83] SMITH A G, WARREN C H, WRIGHT D F. Investigations of the behavior of aircraft when making a forced landing on water ditching:RAE-AERO-2457[R]. Aeronautical Research Council, 1952:1-53.
[84] 徐文岷, 李凯. 民用飞机弹性结构水上迫降试验载荷研究[J]. 航空学报, 2014, 35(4):1012-1018. XU W M, LI K. Research on civil aircraft elastic structure ditching test load[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4):1012-1018(in Chinese).
[85] 吴世德, 田彬. 民用飞机水上迫降适航验证程序的研究[J].民用飞机设计与研究,2007(3):19-22,27-30. WU S D, TIAN B. Research on the airworthiness verification procedure of civil aircraft emergency landing[J]. Design and Research of Civil Aircraft, 2007(3):19-22,27-30(in Chinese).
[86] LEIGH B R. Using the momentum method to estimate aircraft ditching loads[J]. Canadian Aeronautics and Space Journal, 1988, 34:162-169.
[87] THOMAS W L. Ditching investigation of a 1/20-scale model of the space shuttle orbiter[R]. Washington,D.C.:NASA,1975.
[88] WITTLIN G, RAPAPORT M B. Naval rotorcraft water impact crash simulation using program KRASH[C]//Annual Forum Proceedings-American Helicopter Society, 1993, 49.
[89] 李斌. 大型运输机水上迫降研究进展[C]//大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集.北京:中国航空学会, 2007:200-209. LI B. Research progress on water landing of large transport aircraft[C]//Large Aircraft Key Technology Forum and proceedings of the 2007 Annual Conference.Beijing:Aviation Society of China, 2007:200-209(in Chinese).
[90] 张苏, 古彪, 曹东风, 等. 水上迫降尾部吸能对飞机运动特性的影响[J]. 固体力学学报, 2014, 35(S1):33-40. ZHANG S,GU B,CAO D F,et al. Influence of the tail energy absorption on the motion characteristics of aircraft[J].Chinese Journal of Solid Mechanics,2014,35(S1):33-40(in Chinese).
[91] 屈秋林, 刘沛清, 郭保东, 等. 某型客机水上迫降的着水冲击力学性能数值研究[J]. 民用飞机设计与研究, 2009(S1):64-69. QU Q L,LIU P Q,GUO B D, et al. Numerical study on impact mechanical properties of a airliner landing on water[J].Civil Aircraft Design and Resarch, 2009(S1):64-69(in Chinese).
[92] GUO B, LIU P, QU Q, et al. Effect of pitch angle on initial stage of a transport airplane ditching[J]. Chinese Journal of Aeronautics, 2013, 26(1):17-26.
[93] 郭保东, 屈秋林, 刘沛清, 等. 混合翼身布局客机SAX-40水上迫降力学性能数值研究[J].航空学报, 2013, 34(11):2443-2451. GUO B D, QU Q L, LIU P Q, et al. Ditching performance of silent aircraft SAX-40 in hybrid wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2013,34(11):2443-2451(in Chinese).
[94] QU Q, HU M, GUO H, et al. Study of ditching characteristics of transport aircraft by global moving mesh method[J]. Journal of Aircraft, 2015, 52(5):1550-1558.
[95] 张旭, 刘沛清, 屈秋林. 大型飞机机身垂直入水冲击特性数值研究[J]. 民用飞机设计与研究, 2018(2):25-32. ZHANG X, LIU P Q, QU Q L. Numerical study on impact characteristics of large aircraft fuselage with vertical water entry[J]. Civil Aircraft Design and Research, 2018(2):25-32(in Chinese).
[96] 赵芸可, 屈秋林, 刘沛清. 水上飞机水面降落全过程力学特性数值研究[J].北京航空航天大学学报, 2020, 46(4):830-838. ZHAO Y K, QU Q L, LIU P Q. Numerical study on mechanical properties of seaplane surface landing process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4):830-838(in Chinese).
[97] 孙旋. 直升机水上迫降动力学问题研究[D]. 南京:南京航空航天大学, 2016. SUN X. Study on the dynamics of water landing of helicopter[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016(in Chinese).
[98] LU Z, XIAO T. Investigation of helicopter ditching angle on fuselage pressure load using a SPH method[C]//46th AIAA Fluid Dynamics Conference.Reston:AIAA, 2016.
[99] XIAO T, QIN N, LU Z, et al. Development of a smoothed particle hydrodynamics method and its application to aircraft ditching simulations[J]. Aerospace Science and Technology, 2017, 66:28-43.
[100] LU Z Y, XIAO T H, LI Z Z, et al. Pitching angle on space capsule water landing using smooth particle hydrodynamic method[J]. Journal of Spacecraft and Rockets, 2017, 54(3):743-754.
[101] 卢昱锦, 肖天航, 李正洲. 高速平板着水数值模拟[J].航空学报, 2017, 38(S1):721498. LU Y J,XIAO T H,LI Z Z. Numerical simulation of high speed flat surface water[J]. Acta Aeronautica et Astronautica Sinica, 2017,38(S1):721498(in Chinese).
[102] 金禹彤, 陈吉昌, 童明波.楔形体入波浪水面数值模拟[J]. 航空学报, 2019, 40(10):122854. JIN Y T, CHEN J C, TONG M B. Numerical simulation of wedge impacting on wavy water[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):122854(in Chinese).
[103] 付晓琴, 李阳辉, 卢昱锦, 等. 二维平板水漂运动数值模拟[J/OL]. 航空学报, 2020-12-12:24351 FU X Q, LI Y H, LU Y J, et al. Numerical simulation of two-dimensional plate skipping[J]. Acta Aeronautica et Astronautica Sinica, 2020-12-12:24351(in Chinese).
[104] 卢昱锦, 肖天航, 邓双厚, 等. 着水初始条件对水陆两栖飞机着水性能的影响[J]. 航空学报, 2021, 42(6):124483. LU Y J, XIAO T H, DENG S H, et al. Effects of initial conditions on landing performance of the amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6):124483(in Chinese).
[105] JIN Y T, ZHI H, LU Y J, et al. Numerical simulation of three dimensional tank impacting on wavy water[C]//AIAA Aviation 2019 Forum.Reston:AIAA, 2019.
[106] LU Y J, XIAO T H, CHEN J C, et al. Numerical simulation of helicopter ditching on wavy water[C]//AIAA Aviation, 2019 Forum.Reston:AIAA, 2019.
[107] CHEN J C, XIAO T H, TONG M B, et al. Numerical wave simulation and investigation of air-wave-aircraft interactions[C]//AIAA Aviation 2019 Forum. Reston:AIAA, 2019.
[108] 侯斌. 波浪对直升机应急漂浮系统稳定性的影响[D].南京:南京航空航天大学, 2016. HOU B. The influence of water wave on stability of helicopter emergency floating system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016(in Chinese).
[109] WOODGATE M A, BARAKOS G N, SCRASE N, et al. Simulation of helicopter ditching using smoothed particle hydrodynamics[J]. Aerospace Science and Technology, 2019, 85:277-292.
[110] 吴宗成, 黄波恩, 吴亚聪. 滑移动网格在波浪水面迫降数值模拟中的应用[J]. 哈尔滨工业大学学报, 2019, 51(1):80-86. WU Z C, HUANG B E, WU Y C. Application of sliding dynamic grid to wavy water ditching simulation[J]. Journal of Harbin Institute of Technology, 2019, 51(1):80-86(in Chinese).
[111] HU Q,WU B,WANG M Z, et al. Numerical simulation of wave landing loads characteristics of twin-float seaplane[C]//IOP Conference Series:Materials Science and Engineering,2019, 692(1):12-24.
[112] 陈才华. 基于SPH的飞机水上迫降数值分析[D]. 广汉:中国民用航空飞行学院, 2016. CHEN C H. Numerical analysis of aircraft ditching based on SPH method[D]. Guanghan:Civil Aviation Flight University of China, 2016(in Chinese).
[113] 宋志杰. 飞机在波浪中着水的砰击载荷数值模拟[C]//第三十届全国水动力学研讨会暨第十五届全国水动力学学术会议论文集(上册), 2019:591-598. SONG Z J. Numerical simulation of the impact load of aircraft ditching in waves[C]//Proceedings of the 30th National Hydrodynamics Symposium & The 15th National Hydrodynamics Academic Conference (Vol.1), 2019:591-598(in Chinese).
[114] FASANELLA E L, JACKSON K E, LYLE K H. Finite element simulation of a full-scale crash test of a composite helicopter[J]. Journal of the American Helicopter Society, 2002, 47(3):156-168.
[115] BENSCH L, SHIGUNOV V, BEUCK G, et al. Planned ditching simulation of a transport airplane[C]//KRASH Users Seminar, 2001:411-439.
[116] GAMON M A, WITTLIN G, LABARGE B L. KRASH user's guide-input/output format:LR-30777[R]. Lockheed:Co Burbank, 1985.
[117] ORTIZ R, PORTEMONT G, CHARLES J L, et al. Assessment of explicit FE capabilities for full scale coupled fluid/structure aircraft ditching simulation[R]. Office National D Etudes Et De Recherches Aerospatiales Onera-Publications-Tp, 2002:167.
[118] PENTECOTE N, VIGLIOTTI A. Crashworthiness of helicopters on water:Test and simulation of a full-scale WG30 impacting on water[J]. International Journal of Crashworthiness, 2003, 8(6):559-572.
[119] VIGLIOTTI A, PENTECOTE N, CLIFFORD S. Crashworthiness of rotorcraft on water, an experimental test campaign[C]//28th European Rotorcraft Forum, 2002.
[120] HUGHES K. Application of improved Lagrangian techniques for helicopter crashworthiness on water[D]. Bedford:Cranfield University, 2005.
[121] HUGHES K. Characterizing the level of crashworthiness for impacts on hard ground and water surfaces for a metallic helicopter under floor structure:What lessons can be learned?[C]//Proceedings of the Cranfield Multi-Strand Conference:Creating Wealth Through Research and Innovation. Bedford:Cranfield University,2008.
[122] ALGUADICH S. Full scale crash test for cabin safety research[R]. Italian Aerospace Research Center-(CIRA), 2000:1-13.
[123] EADS CASA. CN235:Scaled ditching test shared information within SMAES program:Memorandum No ME-T-MM-110104[R]. 2011.
[124] GOMES J B. Numerical simulation of aircraft ditching of a generic transport aircraft:Implementation of an aerodynamic model[D].Lisbon:Institute Superior Tecnico Lisbon, 2015.
[125] GROENENBOOM P H, CAMPBELL J, BENITEZ MONTANES L, et al. Innovative SPH methods for aircraft ditching[C]//Proceedings of 11th WCCM/5th ECCM, 2014.
[126] BENITEZ M L, CLIMENT M H, SIEMANN M, et al. Ditching numerical simulations:recent steps in industrial applications[C]//Aerospace Structural Impact Dynamics International Conference, 2012:12-40.
[127] CLIMENT H, AREVALO F, VIANA J T, et al. Ditching loads numerical and experimental alternatives[C]//International Forum on Aerolasticity and Structural Dynamics, 2019.
[128] 胡大勇, 杨嘉陵, 王赞平,等. 某型飞机水上迫降数值化模型[J]. 北京航空航天大学学报, 2008, 34(12):1369-1374,1383. HU D Y, YANG J L, WANG Z P, et al. Numerical model for a commercial aircraft water landing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(12):1369-1374,1383(in Chinese).
[129] 张韬, 李书, 江翔, 等. 民用飞机水上迫降分析模型和数值仿真[J]. 南京航空航天大学学报, 2010, 42(3):392-394. ZHANG T, LI S, JIANG X, et al. Analysis model and numeral simulation for civil plane ditching[J] Journal of Nanjing University of Aeronautics and Astronautics, 2010, 42(3):392-394(in Chinese).
[130] 张韬,李书,代恒超.大型客机水上迫降尾部吸力效应分析[J].中国科学:技术科学,2012,42(12):1407-1415. ZHANG T, LI S, DAI H C. Analysis of suction effect of large passenger airplane fuselage[J]. Scientia Sinica Technologica, 2012, 42(12):1407-1415(in Chinese).
[131] 孙为民. 民机机身结构稳定性和水上迫降分析与应用研究[D].南京:南京航空航天大学, 2009. SUN W M. The Research of civil aircraft fuselage structural stability and the ditching[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009(in Chinese).
[132] 宋长福. 民机机身结构入水冲击问题数值仿真研究[D]. 上海:上海交通大学, 2011. SONG C F. Numerical study on water impact of transport fuselage structure[D]. Shanghai:Shanghai Jiao Tong University, 2011(in Chinese).
[133] 张苏. 水上迫降尾部吸能对飞机运动特性的影响[D].武汉:武汉理工大学, 2013. ZHANG S. Effect of energy absorption of tail structure on the kinetic behavior during aircraft ditching[D]. Wuhan:Wuhan University of Technology, 2013(in Chinese).
[134] 中国民用航空局.CCAR25-R4中国民用航空规章第25部运输类飞机适航标[S]. 北京:中国民用航空局,2001. CAAC. CCAR25-R4 civil aviation regulations of the People's Republic of China, Part 25:Airworthiness standards for transport aircraft[S]. Beijing:CAAC, 2001(in Chinese).
[135] FAA. Airworthiness standards:Transport category rotorcraft[S]. Washington, D.C.:FAA, 2011.
[136] 王明振, 李新颖, 左仔滨, 等. 固定翼飞机水上迫降漂浮特性计算方法研究[J]. 航空科学技术, 2015, 26(4):72-78. WANG M Z, LI X Y, ZUO Z B, et al. Study on the calculation method of fixed wing aircraft ditching floating performance[J].Aeronautical Science and Technology, 2015, 26(4):72-78(in Chinese).
[137] 盛振邦, 刘应中. 船舶原理(上)[M]. 上海:上海交通大学出版社, 2011:376-379. SHENG Z B, LIU Y Z. Principles of ship (Part I)[M].Shanghai:Shanghai Jiao Tong University Press, 2011:376-379(in Chinese).
[138] 盛振邦,杨尚荣,陈雪深. 船舶静力学[M].上海:上海交通大学出版社, 1992. SHENG Z B,YANG S R,CHEN X S. Ship statics[M]. Shanghai:Shanghai Jiao Tong University Press, 1992(in Chinese).
[139] VARELA J M, RODRIGUES J M. On-board decision support system for ship flooding emergency response[J]. Procedia Computer Science,2014, 29:1688-1700.
[140] 陈琳. 波浪中双体船完整稳性研究[D]. 哈尔滨:哈尔滨工程大学, 2017. CHEN L. Research on intact stability of a catamaran in waves[D]. Harbin:Harbin Engineering University, 2017(in Chinese).
[141] JOHN C K, WILLIAM A C. Model testing to establish ditching and flotation stability characteristics of helicopters[C]//26th American Helicopter Society Forum, Washington,D.C.:American Helicopter Society, 1970.
[142] TAYLOR A P. FloatStab a tool for the rapid analysis of flotation stability following water landing[C]//18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar.Reston:AIAA, 2005:1-9.
[143] 赵芸可, 刘沛清, 屈秋林. 飞机水上漂浮性能计算方法在某上单翼客机上的应用[C]//2015年第二届中国航空科学技术大会论文集. 北京:中国航空学会, 2015:663-667. ZHAO Y K, LIU P Q, QU Q L. An engineering estimation method of floating characteristics of a high wing airplane[C]//Proceedings of the second China Aviation Science and Technology Conference in 2015.Beijing:Chinese Society of Aeronautics and Astronautics, 2015:663-667(in Chinese).
[144] 伦灿章. 移动式钻井平台三维设计系统的开发研究[D].上海:上海交通大学, 2009. LUN C Z. Study on development of 3D design system for mobile drilling platform[D]. Shanghai:Shanghai Jiao Tong University, 2009(in Chinese).
[145] 伦灿章, 胡铁牛. 基于SolidWorks移动式平台稳性计算方法[J]. 海洋工程, 2009, 27(3):100-105. LUN C Z, HU T N. A stability calculation method for mobile platform based on SolidWorks[J]. The Ocean Engineering, 2009, 27(3):100-105(in Chinese).
[146] 汪正中, 马玉杰, 江婷. 直升机水中横向稳性计算与试验验证[J]. 直升机技术, 2012(4):1-7. WANG Z Z, MA Y J, JIANG T. Computation and test validation of lateral stability for helicopter on water[J]. Helicopter Technique, 2012(4):1-7(in Chinese).
[147] 陈暘, 陈立霞, 汪正中. 直升机缩比模型水中横向稳性试验研究[J]. 直升机技术, 2019(4):57-59,72. CHEN Y, CHEN L X, WANG Z Z. Experiment research on the helicopter scale model lateral stability in water[J]. Helicopter Technique, 2019(4):57-59,72(in Chinese).
[148] 马中帆, 古彪, 曹东风, 等.基于ALE方法的民用飞机水上漂浮特性的数值分析[J].固体力学学报, 2014(S1):285-291. MA Z F, GU B, CAO D F, et al. Floating characteristics analysis of aircraft based on ale method[J]. Chinese Journal of Solid Mechanics, 2014(S1):285-291(in Chinese).
[149] 黄鑫锋. 应急气囊对直升机漂浮稳定性的影响[D].南京:南京航空航天大学,2012. HUANG X F. Stability analysis of the helicopter with flotation bags[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2012(in Chinese).
[150] 杨周. 带应急气囊直升机水上漂浮特性分析[D]. 南京:南京航空航天大学, 2016. YANG Z. Research on stability of helicopter with emergency floatation bags[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016(in Chinese).
[151] 杨周, 陈建平, 张红英, 等. 带应急气囊直升机水上漂浮稳性研究[J]. 航空计算技术, 2016, 46(4):71-74. YANG Z, CHEN J P, ZHANG H Y, et al. Research on stability of helicopter with emergency floatation bags[J]. Aeronautical Computing Technique, 2016, 46(4):71-74(in Chinese).
[152] 李乐. 带应急气囊直升机横向漂浮特性分析[D]. 南京:南京航空航天大学, 2019. LI L. Numerical analysis on lateral floating characteristics of a helicopter with emergency floatation bags[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2019(in Chinese).
[153] CHENG H, ZHANG A M. Study on coupled dynamics of ship and flooding water based on experimental and SPH methods[J]. Physics of Fluids, 2017, 29:107101.
[154] PEKKA R. Progressive flooding of a damaged passenger ship[D]. Helsinki:Helsinki University of Technology, 2007.
[155] MANDERBACKA T, MIKKOLA T, RUPONEN P, et al. Transient response of a ship to an abrupt flooding accounting for the momentum flux[J]. Journal of Fluids and Structures, 2015, 57:108-126.
[156] SANTOS T A, SOARES C G. Study of damaged ship motions taking into account floodwater dynamics[J]. Journal of Marine Science and Technology, 2008, 13(3):291-307.
[157] PEKKA R. Progressive flooding of a damaged passenger ship[M]. Helsinki:Helsinki University of Technology, 2007.
[158] 杨世知, 郑迎革, 王磊. 船舶破损稳性最新要求及检验评估[J]. 船海工程, 2013, 42(3):7-12. YANG S Z, ZHENG Y G, WANG L. The newest requirements of damage stability and inspection[J]. Ship & Ocean Engineering, 2013, 42(3):7-12(in Chinese).
[159] IMO. SOLAS:Consolidated text of the international convention for the safety of life at sea, 1974, and its protocol of 1988:Articles, annexes and certificates:Incorporating all amendments in effect from 1 July 2009[S]. IMO. 2009.
[160] 李佳.船舶破舱浸水的横摇运动时域计算及破舱稳性研究[D]. 上海:上海交通大学, 2009. LI J. Time domain calculation of damaged ship floating and study of damage stability[D]. Shanghai:Shanghai Jiao Tong University, 2009(in Chinese).
[161] KIM J S, ROH M I,HAM S H. A method for intermediate flooding and sinking simulation of a damaged floater in time domain[J]. Journal of Computational Design and Engineering, 2017:1-13.
[162] SANTOS T A, WINKLE I E, SOARES C G. Time domain modelling of the transient asymmetric flooding of Ro-Ro ships[J]. Ocean Engineering, 2002, 29(6):667-688.
[163] GAO Z, WANG Y, SU Y. On damaged ship motion and capsizing in beam waves due to sudden water ingress using the RANS method[J]. Applied Ocean Research, 2020, 95:102047.
[164] STRASSER C. Simulation of progressive flooding of damaged ships by CFD[D]. Glasgow:University of Strathclyde, 2010.
[165] MING F R, ZHANG A M, CHENG H,et al. Numerical simulation of a damaged ship cabin flooding in transversal waves with smoothed particle hydrodynamics method[J]. Ocean Engineering, 2018, 165:336-352.
[166] 王明振, 李新颖, 左仔滨, 等. 固定翼飞机水上迫降漂浮特性计算方法研究[J]. 航空科学技术, 2015, 26(4):72-78. WANG M Z, LI X Y, ZUO Z B, et al. Study on the calculation method of fixed wing aircraft ditching floating performance[J]. Aeronautical Science and Technology, 2015, 26(4):72-78(in Chinese).
[167] 左仔滨, 江婷, 王明振, 等. 基于CATIA平台的飞机水上迫降漂浮特性计算方法[J]. 航空计算技术, 2019, 49(4):95-99. ZUO Z B, JIANG T, WANG M Z, et al. Calculation method of floating characteristics for fixed-wing aircraft base on CATIA secondary development technology[J]. Aeronautical Computing Technique, 2019, 49(4):95-99(in Chinese).
[168] 洪智超. 基于CFD方法的船舶水动力性能预报及优化[D]. 大连:大连理工大学,2018. HONG Z C. Prediction and optimization of ship hydrodynamics using CFD technology[D]. Dalian:Dalian University of Technology, 2018(in Chinese).
[169] KORVIN-KROUKOVSKY B V. Theory of seakeeping.in:The society of naval architects and marine engineers[M]. Ship Structure Committee and SNAME, 1961.
[170] LEWIS L. Principles of naval architecture[M]. Jersey city:The Society of Naval Architects and Marine Engineers, 1988.
[171] NEVES M A S, BELENKY V L, DEKAT J O, et al. Contemporary ideas on ship stability and capsizing in waves[J]. Springer Science & Business Media, 2011,97:1-18.
[172] XIA J, WANG Z, JENSEN J J. Non-linear wave loads and ship responses by a time-domain strip theory[J]. Marine Structures, 1998,11(3):101-123.
[173] MOUSAVI S M, KHOOGAR A R, GHASEMI H. Time domain simulation of ship motion in irregular oblique waves[J]. Journal of Applied Fluid Mechanics, 2020, 13(2):549-559.
[174] YANG P, LI J, WU D, et al. Irregular frequency elimination of three-dimensional hydroelasticity in frequency domain[J]. Ocean Engineering, 2020, 196:106817.
[175] XIAO Q, ZHU R, HUANG S. Hybrid time-domain model for ship motions in nonlinear extreme waves using HOS method[J]. Ocean Engineering, 2019, 192:106554.
[176] DAWSON C W. A practical computer method for solving ship-wave problems[C]//Proceedings of Second International Conference on Numerical Ship Hydrodynamics, 1977:30-38.
[177] Li Y, ZHU R, MIAO G, et al. Simulation of tank sloshing based on OpenFOAM and coupling with ship motions in time domain[J]. Journal of Hydrodynamics, 2012, 24(3):450-457.
[178] CUMMINS W E. The impulse response function and ship motions[R]. Washington, D.C.:David Taylor Model Basin, 1962.
[179] OGILVIE T F, TUCK E O. A rational strip theory of ship motions:part I[R]. Michigan:University of Michigan, 1969.
[180] CLEMENT A H. An ordinary differential equation for the Green function of time-domain free-surface hydrodynamics[J]. Journal of Engineering Mathematics, 1998, 33(2):201-217.
[181] BELENKY V L, SPYROU K J, VAN WALREE F,et al. Contemporary ideas on ship stability:Risk of capsizing:Fluid mechanics and its applications[M].Berlin:Springer, 2019:119.
[182] TAGHIPOUR R, PEREZ T, MOAN T. Hybrid frequency-time domain models for dynamic response analysis of marine structures[J]. The Ocean Engineering, 2008, 35(7):685-705.
[183] MA Q W, YAN S. QALE-FEM for numerical modelling of non-linear interaction between 3D moored floating bodies and steep waves[J]. International Journal for Numerical Methods in Engineering, 2009, 78(6):713-756.
[184] KIM S P. CFD as a seakeeping tool for ship design[J]. International Journal of Naval Architecture and Ocean Engineering, 2011, 3(1):65-71.
[185] LIU Y, XIAO Q, INCECIK A, et al. Establishing a fully coupled CFD analysis tool for floating offshore wind turbines[J]. Renewable Energy, 2017, 112:280-301.
[186] ZULLAH M A, LEE Y H. Review of fluid structure interaction methods application to floating wave energy converter[J]. International Journal of Fluid Machinery and Systems, 2018, 11(1):63-76.
[187] 王明振, 吴彬, 江婷, 等. 直升机水上漂浮特性试验与计算分析[C]//探索创新交流——第六届中国航空学会青年科技论坛文集(上册). 北京:中国航空学会, 2014:106-110. WANG M Z, WU B, JIANG T, et al. The analysis of experimentation and calculation for the characteristic of helicopter Floatage on the water[C]//Exploring Innovative Exchanges--Proceedings of the 6th Aviation Society of China Youth Science and Technology Forum (Vol. 1). Beijing:Chinese Society of Aeronautics and Astronautics, 2014:106-110(in Chinese).
[188] CARTWRIGHT B K, CHHOR A, GROENENBOOM P H. Numerical simulation of a helicopter ditching with emergency floatation devices[C]//5th Int. Spheric Workshop, 2010.
文章导航

/