流体力学与飞行力学

基于全线程树数据结构的笛卡尔网格高效生成技术

  • 陈浩 ,
  • 毕林 ,
  • 华如豪 ,
  • 周清清 ,
  • 唐志共 ,
  • 袁先旭
展开
  • 1. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000;
    2. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000

收稿日期: 2020-12-28

  修回日期: 2021-01-11

  网络出版日期: 2021-02-02

基金资助

国家自然科学基金(12002358)

Efficient Cartesian mesh generation method based on fully threaded tree data structure

  • CHEN Hao ,
  • BI Lin ,
  • HUA Ruhao ,
  • ZHOU Qingqing ,
  • TANG Zhigong ,
  • YUAN Xianxu
Expand
  • 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2020-12-28

  Revised date: 2021-01-11

  Online published: 2021-02-02

Supported by

National Natural Science Foundation of China (12002358)

摘要

笛卡尔网格方法具有易于自适应、自动化程度高、网格质量好等优势。由于其非贴体特性,在处理复杂构型或者复杂流动问题时候往往存在网格量过大的问题,不容忽视。笛卡尔网格生成的效率直接影响了整个计算周期的长短,有必要发展高效的生成技术。对于笛卡尔网格而言,决定网格生成效率的关键在于网格数据结构,其直接影响计算量和存储量。针对三维构型进行笛卡尔网格生成,发展了邻居查询更快捷、内存利用率更高的全线程树数据结构,并在本文的方法框架下进行了适应性应用和改进。同时,为了高效地判断网格单元类型,构建了物面单元的快速检索方式,并引入了染色方法,进一步提高网格生成效率。还提出了一种鲁棒的奇异性检测算法,保证网格单元类型判断的鲁棒性。在流场解自适应方面,采用的是速度散度和旋度相结合的三维判据,以保证对于多种流动特征的捕捉能力。通过圆球、导弹、翼身组合体、机翼-副翼等算例进行了考核验证,经对比,网格自适应位置与理论解吻合较好,且网格单元生成耗时短、平均耗时受物面网格分布影响小,证明了方法的可靠和高效性。

本文引用格式

陈浩 , 毕林 , 华如豪 , 周清清 , 唐志共 , 袁先旭 . 基于全线程树数据结构的笛卡尔网格高效生成技术[J]. 航空学报, 2022 , 43(5) : 125170 -125170 . DOI: 10.7527/S1000-6893.2021.25170

Abstract

The Cartesian mesh method has the advantages of easy adaptation, high degree of automation and good quality. However, its non-body fitted characteristics leads to unnegligible massive amount of grids when addressing complex configuration or complex flow problems. The efficiency of Cartesian mesh generation directly affects the whole computation cycle, entailing the development of efficient generation technology. The key to Cartesian grid generation efficiency is the grid data structure, which directly influences the amount of computation and storage. In this paper, Cartesian grid generation is conducted for three-dimensional configurations, and the Fully Threaded Tree data structure with faster neighbor query and higher memory utilization is developed, which is applied and further improved in this framework. Meanwhile, to effectively determine the type of grid cells, a fast retrieval method of facets is constructed, and the painting algorithm introduced to further improve the grid generation efficiency. In addition, a robust singularity detection algorithm is proposed to ensure the robustness of the grid cell type determination. With respect to mesh adaption based on the flow field solution, a three-dimensional criterion combining velocity divergence and curl is adopted to ensure the ability to capture various flow characteristics. Some test examples such as spheres, missiles, wing-body and wing-aileron configurations are used to verify the method. Comparison shows that the adaptive position of the mesh is in good agreement with the theoretical solution, the generation time cost of the mesh is low, and the average time is less affected by the distribution of the facets, thereby proving the reliability and efficiency of the proposed method.

参考文献

[1] NAKAHASHI K. Aeronautical CFD in the age of Petaflops-scale computing:From unstructured to Cartesian meshes[J]. European Journal of Mechanics B/Fluids, 2013, 40:75-86.
[2] FREMAUX M C, HALL R M. COMSAC:Computational methods for stability and control:NASA/CP-2004-213028[M]. Washington, D.C.:NASA, 2003.
[3] OTTRELL J A, HUGHES T J R, BAZILEVS Y. Isogeometric Analysis:Toward Integration of CAD and FEA[M]. Wiley Publishing, 2009.
[4] THOMPSON J F, THAMES F C, MASTIN C W. Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies[J]. Journal of Computational Physics, 1974, 15(3):299-319.
[5] LEE K. 3-D transonic flow computations using grid systems with block structure[C]//5th Computational Fluid Dynamics Conference, 1981.
[6] SAWADA K, TAKANASHI S. A numerical investigation on wing/nacelle interferences of USB configuration[C]//25th AIAA Aerospace Sciences Meeting, 1987.
[7] 常兴华, 马戎, 张来平. 并行化非结构重叠网格隐式装配技术[J]. 航空学报, 2018, 39(6):121780. CHANG X H, MA R, ZHANG L P. Parallel implicit hole-cutting method for unstructured overset grid[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):121780(in Chinese).
[8] NAKAHASHI K, ITO Y, TOGASHI F. Some challenges of realistic flow simulations by unstructured grid CFD[J]. International Journal for Numerical Methods in Fluids, 2010, 43(6-7):769-783.
[9] CLARKE D K, HASSAN H A, SALAS M D. Euler calculations for multielement airfoils using Cartesian grids[J]. AIAA Journal, 1986, 24(3):353-358.
[10] MICHELTREE R A, HASSAN H A, SALAS M D. Grid embedding technique using Cartesian grids for Euler solutions[J]. AIAA Journal, 1971, 26(6):754-756.
[11] MORINISHI K. A Finite Difference Solution of the Euler Equations on Non-Body-Fitted Cartesian Grids[J]. Computers & Fluids, 1992, 21:331-344.
[12] DE ZEEUW D L. A quadtree-based adaptively-refined cartesian-grid algorithm for solution of the Eulerequations[D]. Michigan:University of Michigan, 1993.
[13] SANG W, YU J. Numerically analyzing more efficiently high-lift aerodynamics of wing/body model with omni-tree Cartesian grids[J]. Aerospace Science & Technology, 2011, 15(5):375-380.
[14] JAE-DOO L. Development of an efficient viscous approach in a cartesian grid framework and application to rotor-fuselage interaction[D]. Georgia:Georgia Institute of Technology, 2006.
[15] DADONE A, GROSSMAN B. Ghost-Cell Method with far-field coarsening and mesh adaptation for Cartesian grids[J]. Computers and Fluids, 2006, 35(7):676-687.
[16] DELANAYE M, AFTOSMIS M, BERGER M, et al. Automatic hybrid-Cartesian grid generation for high-Reynolds number flows around complex geometries[C]//37th Aerospace Sciences Meeting & Exhibit, 1999.
[17] CHARLTON E F. An octree solution to conservation-laws over arbitrary regions with applications to aircraft aerodynamics[D]. Michigan:University of Michigan, 1997.
[18] FUJIMOTO K, FUJII K, WANG Z J. Improvements in the reliability and efficiency of body-fitted cartesian grid method:AIAA-2009-1173[R]. Reston:AIAA, 2009.
[19] MATTHIAS M, LENNART S, CLAUDIA G, et al. A cut-cell method for sharp moving boundaries in Cartesian grids[J]. Computers and Fluids, 2013, 85:135-142.
[20] UDAYKUMAR H S. A Sharp Interface Cartesian Grid Method for Simulating Flow with Complex Moving Boundaries[J]. Journal of Computational Physics, 2001, 174(1):345-380.
[21] PESKIN C S. Flow patterns around heart valves:a numerical method[J]. Journal of Computational Physics, 1972, 10(2):252-271.
[22] DADONE A, GROSSMAN B. An immersed body methodology for inviscid flows on cartesian grids:AIAA-2002-1059[R]. Reston:AIAA, 2002.
[23] JAE-DOO L, RUFFIN S M. Development of a turbulent wall-function based viscous cartesian-grid methodology:AIAA-2007-1326[R]. Reston:AIAA, 2007.
[24] BERNARDINI M, MODESTI D, PIROZZOLI S. On the suitability of the immersed boundary method for the simulation of high-Reynolds-number separated turbulent flows[J]. Computers & Fluids, 2016, 130:84-93.
[25] DADONE A. Towards a ghost-cell method for analysis of viscous flows on cartesian grids:AIAA-2010-709[R]. Reston:AIAA, 2010.
[26] KHOKHLOV A M. Fully threaded tree for adaptive refinement fluid dynamics simulations[J]. Journal of Computational Physics, 1997, 143(2):519-543.
[27] ZHANG X Q, LAI K L. Simulation of transonic aeroservoelasticity using cartesian-grid based flow solver[C]//42nd AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2012.
[28] EMBLEMSVAG J E. A Cartesian grid method for simulation of the unsteady aerodynamics of microscale flapping flight[D]. 2005.
[29] SITARAMAN J, FLOROS M, WISSINK A, et al. Parallel domain connectivity algorithm for unsteady flow computations using overlapping and adaptive grids[J]. Journal of Computational Physics, 2010, 229(12):4703-4723.
[30] SITARAMAN J, FLOROS M, WISSINK A, et al. Parallel unsteady overset mesh methodology for a multi-solver paradigm with adaptive Cartesian grids[C]//26th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2008.
[31] MA LI. A three-dimensional cartesian mesh generation algorithm based on the GPU parallel ray casting method[J]. Applied Sciences, 2019, 10(1):58.
[32] BARBARA C, GABRIELE J, RUUD VAN DER P. Using OpenMP[M]. London:The MIT Press, 2008.
[33] TURNER E L, HU H. A parallel CFD rotor code using OpenMP[J]. Advances in Engineering Software, 2001, 32(8):665-671.
[34] WANG Z J, CHEN R F. Anisotropic solution-adaptive viscous cartesian grid method for turbulent flow simulation[J]. AIAA Journal, 2002, 40(10):1969-1978.
[35] JON L B.Multidimensional binary search trees used for associative searching[J]. Communications of the ACM, 1975, 18(9):509-517.
[36] AFTOSMIS M J. Aspects of cartesian grid methods for aerodynamic flows with complex geometries[C]//28th Lecture Series in Advanced Computational Fluid Dynamics, 1997.
[37] NING J, MA T, LIN G. A mesh generator for 3-D explosion simulations using the staircase boundary approach in Cartesian coordinates based on STL models[J]. Advancer in Engineering Software, 2014, 67:148-155.
[38] BONET J, PERAIRE J. An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems[J]. International Journal for Numerical Methods in Engineering, 1991, 31(1):1-17.
[39] SHEVTSOV M, SOUPIKOV A, KAPUSTIN A. Highly parallel fast KD-tree construction for interactive ray tracing of dynamic scenes[J]. Computer Graphics Forum, 2010, 26(3):395-404.
[40] CAPIZZANO F. Automatic generation of locally refined Cartesian meshes:Data management and algorithms[J]. International Journal for Numerical Methods in Engineering, 2018, 113(5):789-813.
[41] IACCARINO G, HAM F. Automatic mesh generation for LES in complex geometries[J]. CTR Annual Briefs, 2005, 20(1):19-30.
[42] PARK S, SHIN H. Efficient generation of adaptive Cartesian mesh for computational fluid dynamics using GPU[J]. International Journal for Numerical Methods in Fluids, 2012, 70:1393-1404.
[43] 唐志共, 陈浩, 毕林, 等. 自适应笛卡尔网格超声速黏性流动数值模拟[J]. 航空学报, 2018, 39(5):121697. TANG Z G, CHEN H, BI L, et al.Numerical simulation of supersonic viscous flow based on adaptive Cartesian grid[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121697(in Chinese).
[44] BILLIG F S. Shock-wave shapes around spherical and cylindrical-nosed bodies[J]. Journal of Spacecraft and Rockets, 1968, 4(6):822-823.
文章导航

/