固体力学与飞行器总体设计

基于缩比模型的薄壁结构声振响应等效研究

  • 赵小见 ,
  • 邵晓 ,
  • 杨明绥
展开
  • 1. 北京理工大学 宇航学院, 北京 100081;
    2. 中国航发沈阳发动机研究所, 沈阳 110015

收稿日期: 2020-12-23

  修回日期: 2021-01-12

  网络出版日期: 2021-02-02

基金资助

国家自然科学基金(52076014,91952302)

Equivalence of vibro-acoustic response based on scaled thin-walled structures

  • ZHAO Xiaojian ,
  • SHAO Xiao ,
  • YANG Mingsui
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. Shengyang Engine Research Institute, AECC, Shenyang 110015, China

Received date: 2020-12-23

  Revised date: 2021-01-12

  Online published: 2021-02-02

Supported by

National Natural Science Foundation of China (52076014,91952302)

摘要

声振试验是研究强噪声作用下结构动力学响应的一种有效方法。然而,高声强、宽频率噪声环境的试验室模拟是声振试验面临的挑战之一。为了降低声振动试验对严酷噪声环境的依赖性,本文提出了一种等效方法。根据该等效方法,缩比模型在等效外力作用下,可获得和全尺寸结构完全一致的结构响应。提出的等效方法可以评估不同类型的噪声激励,包括集中力、点声源、面声源和混响声场等激发的结构振动,而不需要模拟更宽频率的外激励。为了验证该等效方法的可靠性,研究对不同方法,包括数值计算、地面试验和等效方法等获得的结构频域响应结果进行对比,对比结果表明基于缩比模型的等效方法能准确地预测全尺寸结构的动载荷响应。此外,本研究还讨论了不同支撑边界和材料效应对等效方法的影响,进一步扩展了等效方法的适用范围。

本文引用格式

赵小见 , 邵晓 , 杨明绥 . 基于缩比模型的薄壁结构声振响应等效研究[J]. 航空学报, 2022 , 43(3) : 225146 -225146 . DOI: 10.7527/S1000-6893.2021.25146

Abstract

Vibro-acoustic testing is an effective approach to the investigation of structural dynamics subject to high-intensity acoustic environments.However, creating a high-intensity and broad frequency acoustic environment remains a challenge in the laboratory.To reduce the dependence on a severe environment during a vibro-acoustic test, we propose an equivalence technique to obtain a completely consistent dynamic response using a scaled model subject to equivalent external forces.This technique can assess the structural vibration caused by different external forces, including concentrated forces, monopole surface sound sources and reverberation field.To validate the equivalence method, we compare the results achieved by different methods, including numerical computations, ground measurements and the equivalence method, proving that the equivalence method based on a scale model can better predict the dynamic response of the prototype.In addition, the effects of the supporting boundary and material effect on the equivalence method are also discussed and the application scope of the equivalence method further extended.

参考文献

[1] 张颖哲, 倪大明, Incheol LEE, 等.缩比发动机喷嘴热喷流噪声试验[J].航空学报, 2018, 39(12):122446. ZHANG Y Z, NI D M, LEE I, et al.Test on hot jet noise of scaled engine nozzle[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122446(in Chinese).
[2] 童福林, 周桂宇, 孙东, 等.膨胀效应对激波/湍流边界层干扰的影响[J].航空学报, 2020, 41(9):123731. TONG F L, ZHOU G Y, SUN D, et al.Expansion effect on shock wave and turbulent boundary layerinteractions[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(9):123731(in Chinese).
[3] WALLACE C E.Structural response and acoustic fatigue for random progressive waves and diffuse fields[J].Journal of Spacecraft and Rockets, 1985, 22(3):340-344.
[4] STEINWOLF A, WHITE R G, WOLFE H F.Simulation of jet-noise excitation in an acoustic progressive wave tube facility[J].The Journal of the Acoustical Society of America, 2001, 109(3):1043-1052.
[5] HOLLKAMP J, GORDON R.The importance of structural-acoustic coupling in progressive wavetesting[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference.Reston:AIAA, 2011.
[6] PITT D M, LIGUORE S L, THOMAS M J, et al.Thermal acoustic test and analysis model updating and correlation[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.Reston:AIAA, 2013.
[7] POLITO T, MARULO F.Probabilistic finite elements for vibroacoustic applications[C]//12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference).Reston:AIAA, 2006.
[8] SESTIERI A, CARCATERRA A.Vibroacoustic:The challenges of a mission impossible?[J].Mechanical Systems and Signal Processing, 2013, 34(1-2):1-18.
[9] SAITO A, NISHIKAWA Y, YAMASAKI S, et al.Equivalent orthotropic elastic moduli identification method for laminated electrical steel sheets[J].Mechanical Systems and Signal Processing, 2016, 72-73:607-628.
[10] LIU Y, CATALAN J C.External mean flow influence on sound transmission through finite clamped double-wall sandwich panels[J].Journal of Sound and Vibration, 2017, 405:269-286.
[11] ALLEN M J, VLAHOPOULOS N.Integration of finite element and boundary element methods for calculating the radiated sound from a randomly excited structure[J].Computers & Structures, 2000, 77(2):155-169.
[12] CHUNG Y, FOIST B.Evaluation of acoustic component coupling to the vibroacoustic response predictions[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.Reston:AIAA, 2007.
[13] XIE G, THOMPSON D J, JONES C J C.A modelling approach for the vibroacousticbehaviour of aluminium extrusions used in railway vehicles[J].Journal of Sound and Vibration, 2006, 293(3-5):921-932.
[14] CULLA A, D'AMBROGIO W, FREGOLENT A, et al.Vibroacoustic optimization using a statistical energy analysis model[J].Journal of Sound and Vibration, 2016, 375:102-114.
[15] HAN F, BERNHARD R J, MONGEAU L G.Predictionof flow-induced structural vibration and sound radiation using energy flow analysis[J].Journal of Sound and Vibration, 1999, 227(4):685-709.
[16] DURANT C, ROBERT G, FILIPPI P J T, et al.Vibroacoustic response of a thin cylindrical shell excited by a turbulent internal flow:Comparison between numerical prediction and experimentation[J].Journal of Sound and Vibration, 2000, 229(5):1115-1155.
[17] MEYER V, MAXIT L, RENOU Y, et al.Experimental investigation of the influence of internal frames on the vibroacoustic behavior of a stiffened cylindrical shell using wavenumber analysis[J].Mechanical Systems and Signal Processing, 2017, 93:104-117.
[18] SOEDEL W.Similitude approximations for vibrating thin shells[J].The Journal of the Acoustical Society of America, 1971, 49(5B):1535-1541.
[19] REZAEEPAZHAND J, SIMITSES G J.Design of scaled down models for predicting shell vibrationrepsonse[J].Journal of Sound and Vibration, 1996, 195(2):301-311.
[20] ROSA S D, FRANCO F, RICCI F, et al.First assessment of the scaling procedure for the evaluation of the damped structural response[J].Journal of Sound and Vibration, 1997, 204(3):540-548.
[21] HANSON D, RANDALL R B, ANTONI J, et al.Cyclostationarity and the cepstrum for operational modal analysis of MIMO systems-Part II:obtaining scaled mode shapes through finite element model updating[J].Mechanical Systems and Signal Processing, 2007, 21(6):2459-2473.
[22] SINGHATANADGID P, NA SONGKHLA A.An experimental investigation into the use of scaling laws for predicting vibration responses of rectangular thinplates[J].Journal of Sound and Vibration, 2008, 311(1-2):314-327.
[23] ADAMS C, BÖS J, SLOMSKI E M, et al.Scaling laws obtained from a sensitivity analysis and applied to thin vibrating structures[J].Mechanical Systems and Signal Processing, 2018, 110:590-610.
[24] FRANCO F, ROBIN O, CIAPPI E, et al.Similitude laws for the structural response of flat plates under a turbulent boundary layer excitation[J].Mechanical Systems and Signal Processing, 2019, 129:590-613.
[25] ZHAO X J, AI B C.Predicting the structural response induced by turbulent boundary layer in wind tunnel[J].AIAA Journal, 2016, 55(4):1221-1229.
[26] ZHAO X J, CHEN H B, LEI J M, et al.A scaling procedure for measuring thermal structural vibration generated by wall pressure fluctuation[J].Chinese Journal of Aeronautics, 2019, 32(4):815-825.
[27] ROSA S D, FRANCO F.Exact and numerical responses of a plate under a turbulent boundary layer excitation[J].Journal of Fluids and Structures, 2008, 24(2):212-230.
[28] JOSHI P, MULANI S B, SLEMP W C H, et al.Vibro-acoustic optimization of turbulent boundary layer excited panel with curvilinear stiffeners[J].Journal of Aircraft, 2012, 49(1):52-65.
[29] GENG Q, LI H, LI Y M.Dynamic and acoustic response of a clamped rectangular plate in thermal environments:Experiment and numerical simulation[J].The Journal of the Acoustical Society of America, 2014, 135(5):2674-2682.
文章导航

/