The chaotic Direct Sequence Spread Spectrum (DSSS) has become a research focus in the communication field because of its high capacity, low interception rate and excellent security in the physical layer, and it can provide a secure and reliable address code for the satellite navigation system. Although randomness of chaotic sequences can enhance the security of chaotic DSSS signals, traditional chaotic DSSS systems cannot overcome reconstruction and nonlinear prediction of chaotic models by unauthorized users, with the development of blind despreading and chaotic prediction techniques. Therefore, it is very important to study the anti-blind estimation transmission methods of chaotic DSSS signals. To improve the security of chaotic DSSS signals and solve the problem of illegal prediction of unauthorized users, this paper proposes an Anti-blind Estimation Transmission (AET) method for chaotic DSSS signals. By introducing two orthogonal long period PN sequences and using the PN sequence alternating shift to control chaotic system parameters, the chaotic sequence is synchronized according to the correlation peak, so as to achieve the purpose of information transmission. The method proposed can not only ensure efficient transmission of authorized users, but also suppress blind estimation of unauthorized users, reduce probability of illegal reception of unauthorized users, and improve system security. This method can provide theoretical and technical support for high performance transmission of navigation signals.
[1] 奚之飞, 徐安, 寇英信, 等. 基于改进粒子群算法辨识Volterra级数的目标机动轨迹预测[J].航空学报, 2020, 41(12):324183. XI Z F, XU A, KOU Y X, et al. Target maneuver trajectory prediction based on Volterra series identified by improved particle swarm algorithm[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(12):324183(in Chinese).
[2] 陈江涛, 章超, 刘骁, 等. 基于稀疏多项式混沌方法的不确定性量化分析[J].航空学报, 2020, 41(3):123382. CHEN J T, ZHANG C, LIU X, et al. Uncertainty quantification analysis with sparse polynomial chaos method[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(3):123382(in Chinese).
[3] ÇIÇEK S, KOCAMAZ U E, UYAROǦLU Y. Secure chaotic communication with jerk chaotic system using sliding mode control method and its real circuit implementation[J].Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2019, 43(3):687-698.
[4] WANG T J, WANG D C, WU K J. Chaotic adaptive synchronization control and application in chaotic secure communication for industrial Internet of Things[J].IEEE Access, 2018, 6:8584-8590.
[5] 贺利芳, 吴雪霜, 张天骐. 正交多载波降噪差分混沌键控通信系统[J].电子与信息学报, 2021, 43(4):1120-1128. HE L F, WU X S, ZHANG T Q. Quadrature multicarrier noise reduction differential chaos shift keying system[J].Journal of Electronics & Information Technology, 2021, 43(4):1120-1128(in Chinese).
[6] 张刚, 王传刚, 张天骐. 基于正交混沌载波的多用户DCSK系统性能分析[J].系统工程与电子技术, 2017, 39(2):431-436. ZHANG G, WANG C G, ZHANG T Q. Performance analyze for MU-DCSK system based on orthogonal chaotic carrier[J].Systems Engineering and Electronics, 2017, 39(2):431-436(in Chinese).
[7] 王颖, 张晓忠, 曾娟, 等. 基于二级混沌映射的OFDM安全传输方案[J].通信学报, 2016, 37(7):132-139. WANG Y, ZHANG X Z, ZENG J, et al. Secure OFDM transmission scheme based on two-stage chaos mapping[J].Journal on Communications, 2016, 37(7):132-139(in Chinese).
[8] 王会海, 孙克辉, 贺少波. 分数阶混沌扩频通信系统的设计[J].中南大学学报(自然科学版), 2018, 49(4):874-880. WANG H H, SUN K H, HE S B. Design of communication system of fractional-order chaotic spread spectrum[J].Journal of Central South University (Science and Technology), 2018, 49(4):874-880(in Chinese).
[9] 眭萍, 郭英, 李红光, 等. 基于混沌吸引子重构和Low-rank聚类的跳频信号电台分选[J].电子与信息学报, 2019, 41(12):2965-2971. SUI P, GUO Y, LI H G, et al. Frequency-hopping transmitter classification based on chaotic attractor reconstruction and low-rank clustering[J].Journal of Electronics & Information Technology, 2019, 41(12):2965-2971(in Chinese).
[10] 黄晓萍. 基于混沌扩频的水声通信技术研究[D]. 哈尔滨:哈尔滨工程大学, 2007. HUANG X P. Study on UWA communication technology based-on chaotic spread-spectrum[D]. Harbin:Harbin Engineering University, 2007(in Chinese).
[11] TAYEBI A, BERBER S, SWAIN A. Security enhancement of fix chaotic-DSSS in WSNs[J].IEEE Communications Letters, 2018, 22(4):816-819.
[12] 李婷. 基于粒子滤波的混沌直接序列扩频信号盲解扩方法研究[D]. 长沙:国防科学技术大学, 2014. LI T. Blind despreading of chaotic direct sequence spread spectrum signals based on particle filters[D]. Changsha:National University of Defense Technology, 2014(in Chinese).
[13] 韩敏, 任伟杰, 李柏松, 等. 混沌时间序列分析与预测研究综述[J].信息与控制, 2020, 49(1):24-35. HAN M, REN W J, LI B S, et al. Survey of chaotic time series analysis and prediction[J].Information and Control, 2020, 49(1):24-35(in Chinese).
[14] HAN M, ZHONG K, QIU T, et al. Interval type-2 fuzzy neural networks for chaotic time series prediction:A concise overview[J].IEEE Transactions on Cybernetics, 2019, 49(7):2720-2731.
[15] 张子建, 王宏伟, 周怀芳, 等. 基于多机制混合象群算法的混沌系统参数估计[J].微电子学与计算机, 2020, 37(6):40-45. ZHANG Z J, WANG H W, ZHOU H F, et al. Parameter estimation of chaotic system based on multi-mechanism hybrid Elephant herding algorithm[J].Microelectronics & Computer, 2020, 37(6):40-45(in Chinese).
[16] SEDAGHATNEJAD S, FARHANG M. Detectability of chaotic direct-sequence spread-spectrum signals[J].IEEE Wireless Communications Letters, 2015, 4(6):589-592.
[17] ZHOU L L, TAN F, YU F. A robust synchronization-based chaotic secure communication scheme with double-layered and multiple hybrid networks[J].IEEE Systems Journal, 2020, 14(2):2508-2519.
[18] CUI S Y, ZHANG J Z. Chaotic secure communication based on single feedback phase modulation and channel transmission[J].IEEE Photonics Journal, 2019, 11(5):1-8.
[19] 谢岸宏, 朱立东, 翟继强, 等. 一种抗盲检测的直扩隐蔽信号设计方法[J].电子学报, 2018, 46(12):2817-2823. XIE A H, ZHU L D, ZHAI J Q, et al. A method of designing covert DSSS-signal for anti-blind detection[J].Acta Electronica Sinica, 2018, 46(12):2817-2823(in Chinese).
[20] HUA Z Y, ZHANG Y X, ZHOU Y C. Two-dimensional modular chaotification system for improving chaos complexity[J].IEEE Transactions on Signal Processing, 2020, 68:1937-1949.