流体力学与飞行力学

平流层系留气球气动参数敏感性分析

  • 张冬辉 ,
  • 张泰华 ,
  • 崔燕香 ,
  • 陈臣 ,
  • 王生
展开
  • 1. 中国科学院 空天信息创新研究院, 北京 100194;
    2. 中国科学院大学, 北京 100190

收稿日期: 2020-12-10

  修回日期: 2021-01-08

  网络出版日期: 2021-02-02

基金资助

中国科学院战略性先导科技专项(XDA20100200)

Sensitivity analysis of aerodynamic parameters of stratospheric tethered balloon

  • ZHANG Donghui ,
  • ZHANG Taihua ,
  • CUI Yanxiang ,
  • CHEN Chen ,
  • WANG Sheng
Expand
  • 1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100194, China;
    2. University of Chinese Academy of Sciences, Beijing 100190, China

Received date: 2020-12-10

  Revised date: 2021-01-08

  Online published: 2021-02-02

Supported by

Strategic Priority Research Program of the Chinese Academy of Sciences (XDA20100200)

摘要

推导了平流层系留气球三维数学模型,提出了从系统优化设计和驻空试验特性研究两个角度进行参数敏感性分析的意义,给出了两个角度下参数敏感性分析方法,并从这两个角度对系缆法向气动力系数、气球气动阻力系数和气球气动升力系数进行了敏感性分析。结果表明:减小系缆法向气动力系数在系统优化设计中能够显著提高系缆最大安全系数,并在驻空试验中能够减小系缆张力和提升系统抗风能力;气球气动阻力系数和气球气动升力系数对设计阶段提高系缆最大安全系数没有影响,但参数变化会显著影响驻空试验的系缆安全和系统抗风能力。

本文引用格式

张冬辉 , 张泰华 , 崔燕香 , 陈臣 , 王生 . 平流层系留气球气动参数敏感性分析[J]. 航空学报, 2022 , 43(5) : 125083 -125083 . DOI: 10.7527/S1000-6893.2021.25083

Abstract

A three-dimensional model is established for a stratospheric tethered balloon. The significance of parameter sensitivity analysis from the perspectives of system optimization design and flight test characteristics is discussed. The method of parameter sensitivity analysis from the two aspects is proposed and conducted for the tether normal aerodynamic coefficient, balloon resistance coefficient, and balloon lift coefficient. The analysis results show that reduction of the normal tether aerodynamic coefficient can significantly improve the maximum safety factor of the tether in the system optimization design, meanwhile reducing the tether tension and improving the wind-resistant capability of the system in the flight test. The balloon resistance coefficient and balloon lift coefficient do not improve the maximum safety factor of the tether in the design stage, while change in the parameters will affect the safety of the cable and wind-resistant capability in the flight test.

参考文献

[1] D'OLIVEIRA F A, DE MELO F C L, DEVEZAS T C. High-altitude platforms-present situation and technology trends[J]. Journal of Aerospace Technology and Management, 2016, 8(3):249-262.
[2] 杨希祥, 朱炳杰, 邓小龙, 等. Stratobus平流层飞艇项目研究进展与仿真分析[J]. 航空学报, 2021, 42(9):364-373. YANG X X, ZHU B J, DENG X L, et al. Development status and simulation analysis of stratospheric airship Stratobus[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9):364-373(in Chinese).
[3] 李冠雄, 王靖宇, 王运涛. 低压储能的升浮一体飞行器总体参数研究[J]. 航空学报, 2021, 42(7):376-388. LI G X, WANG J Y, WANG Y T. Parametric study on buoyancy-lifting aerial vehicle with low pressure energy storage method[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7):376-388(in Chinese).
[4] 马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3):623418. MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):623418(in Chinese).
[5] GONZALO J, LóPEZ D, DOMíNGUEZ D, et al. On the capabilities and limitations of high altitude pseudo-satellites[J]. Progress in Aerospace Sciences, 2018, 98:37-56.
[6] XU Y M, ZHU W Y, LI J, et al. Improvement of endurance performance for high-altitude solar-powered airships:a review[J]. Acta Astronautica, 2020, 167:245-259.
[7] ZHU X F, GUO Z, HOU Z X. Solar-powered airplanes:a historical perspective and future challenges[J]. Progress in Aerospace Sciences, 2014, 71:36-53.
[8] 顾逸东. 气球科学观测100年[J]. 现代物理知识, 2020, 32(2):3-122. GU Y D. 100 years of balloon scientific observation[J]. Modern Physics, 2020, 32(2):3-12(in Chinese).
[9] 邓小龙, 杨希祥, 麻震宇, 等. 基于风场环境利用的平流层浮空器区域驻留关键问题研究进展[J]. 航空学报, 2019, 40(8):022941. DENG X L, YANG X X, MA Z Y, et al. Review of key technologies for station-keeping of stratospheric aerostats based on wind field utilization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):022941(in Chinese).
[10] MILLER S H, FESEN R, HILLENBRAND L A, et al. Airships:a new horizon for science[EB/OL]. http://www.kiss.caltech.edu/study/airship/. 2014
[11] ZHANG D H, LUO H B, CUI Y X, et al. Tandem, long-duration, ultra-high-altitude tethered balloon and its system characteristics[J]. Advances in Space Research, 2020, 66(10):2446-2465.
[12] BADESHA S, BUNN J. Dynamic simulation of high altitude tethered balloon system subject to thunderstorm windfield[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston:AIAA, 2002.
[13] EULER A, BADESHA S, SCHROEDER L. Very high altitude tethered balloon feasibility study[C]//11th Lighter-than-Air Systems Technology Conference. Reston:AIAA, 1995.
[14] CHIBA K, SATORI S, HIRAMOTO R, et al. Feasibility studies on a high-altitude captive lighter-than-air platform system[C]//15th AIAA Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2015.
[15] GRANT D, RAND J. Dynamic analysis of an ascending high altitude tethered balloon[C]//34th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1996.
[16] 卢新来, 罗明强, 孙聪, 等. 系留气球的升空模拟[J]. 航空学报, 2006, 27(5):768-772. LU X L, LUO M Q, SUN C, et al. Simulations of tethered balloon ascent[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5):768-772(in Chinese).
[17] 史献林, 余莉, 施红. 系留气球升空过程的动态模拟[J]. 航空学报, 2009, 30(4):609-613. SHI X L, YU L, SHI H. Dynamic simulation of ascending tethered balloon[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(4):609-613(in Chinese).
[18] AKITA D. Feasibility study of a sea-anchored stratospheric balloon for long-duration flights[J]. Advances in Space Research, 2012, 50(4):508-515.
[19] ZUO Z Y, ZHU M, WU Y M, et al. Modeling, stability analysis and simulation of a stratosphere hybrid tethered platform[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2011.
[20] 祝明, 左宗玉. 高空系留气球建模与稳定性分析[J]. 北京航空航天大学学报, 2010, 36(8):940-944. ZHU M, ZUO Z Y. Modeling and stability analysis for high altitude tethered balloon[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(8):940-944(in Chinese).
[21] COSTELLO H M, KUO K, HUNT H. Stability analysis of an aerodynamically shaped high-altitude-balloon tether[R]. 2012.
[22] BADESHA S, EULER A, SCHRODER L. Very high altitude tethered balloon parametric sensitivity study[C]//34th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1996.
[23] WILCOX B H, SCHNEIDER E G, VAUGHAN D A, et al. Low-Cost propellant launch to LEO from a tethered balloon:Recent progress[C]//2009 IEEE Aerospace conference. Piscataway:IEEE, 2009.
[24] National Aeronautics and Space Administration. Standard atmosphere[R]. Washington, D.C.:U.S. Government Printing Office, 1976.
文章导航

/