电子电气工程与控制

能耗均衡的三维最优持久编队通信拓扑生成

  • 罗贺 ,
  • 李晓多 ,
  • 王国强
展开
  • 1. 合肥工业大学 管理学院, 合肥 230009;
    2. 合肥工业大学 过程优化与智能决策教育部重点实验室, 合肥 230009;
    3. 合肥工业大学 智能互联系统安徽省实验室, 合肥 230009

收稿日期: 2020-10-26

  修回日期: 2021-02-03

  网络出版日期: 2021-02-02

基金资助

国家自然科学基金(71871079,71971075,71671059);装备预研领域基金(61403120404);安徽省自然科学基金(1808085MG213);国家重点研发计划(2019YFE0110300)

Energy-balanced communication topology generation of three-dimensional optimally persistent formation

  • LUO He ,
  • LI Xiaoduo ,
  • WANG Guoqiang
Expand
  • 1. School of Management, Hefei University of Technology, Hefei 230009, China;
    2. Key Laboratory of Process Optimization and Intelligent Decision-Making, Ministry of Education, Hefei University of Technology, Hefei 230009, China;
    3. Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology, Hefei 230009, China

Received date: 2020-10-26

  Revised date: 2021-02-03

  Online published: 2021-02-02

Supported by

National Natural Science Foundation of China(71871079, 71971075, 71671059); Equipment Pre-Research Field Foundation(61403120404); Anhui Natural Science Foundation (1808085MG213); National Key Research and Development Program of China(2019YFE0110300)

摘要

持久编队通信拓扑的优化是在确保多智能体使用持久编队控制方法保持队形的基础上尽量减少智能体之间的通信能耗。现有的方法可以最小化智能体的通信能耗总和,却未考虑均衡智能体间的通信能耗,而这会导致某些智能体提前退出编队。针对这一问题,以最大化队形保持时间为目标,研究了考虑能耗均衡的三维最优持久编队通信拓扑生成方法。首先,设计了一种通信拓扑离线优化机制,即选择一个合适的周期,在编队运动之前计算出每个周期内的通信拓扑,在编队保持队形过程中据此定期调整通信拓扑,从而避免在线计算和发布通信拓扑带来额外的通信能耗;而在离线计算每个周期内的通信拓扑时,先估计出每个周期开始时每个智能体的剩余通信能量,并据此更新网络拓扑中各通信链接的权重,再从更新后的网络拓扑中生成一个三维最优持久图作为本周期内的通信拓扑。其次,针对每个周期内的三维最优持久图生成问题,由于更新后的网络拓扑中的通信链路权重不对称,导致现有算法难以适用,为此提出了一种基于刚度矩阵和弧添加操作的近似求解算法,并从理论上分析了其时间复杂度和证明了其有效性。最后,通过仿真实验结果验证了该方法可以有效降低并均衡各智能体的通信能耗,相比于所有对比方法的平均水平,在节点数为5、10、15的情形下的队形保持时间分别提升了29.5%、59.4%、72.01%。

本文引用格式

罗贺 , 李晓多 , 王国强 . 能耗均衡的三维最优持久编队通信拓扑生成[J]. 航空学报, 2022 , 43(1) : 324922 -324922 . DOI: 10.7527/S1000-6893.2021.24922

Abstract

The optimization of communication topology of persistent formation is to minimize the communication energy consumption between agents on the basis of ensuring that the multi-agents use the persistent formation control method to maintain formation. The existing methods can minimize the total communication energy consumption of agents, but do not consider balancing communication energy consumption between agents, which will lead to early withdrawal of some agents from the formation. To solve this problem and maximize the formation keeping time, a communication topology generation method of 3D optimally persistent formation considering energy consumption balance is proposed. First, an offline optimization mechanism of communication topology is designed, including selecting a suitable cycle, calculating the communication topology of each cycle before formation movement, and adjusting the communication topology periodically during the formation keeping process, so as to avoid additional communication energy consumption caused by online calculating and publishing communication topology. When calculating the communication topology of each cycle off-line, the remaining communication energy of each agent at the beginning of each cycle is estimated, the weight of each communication link in the network topology is updated accordingly, and then a 3D optimally persistent graph is generated from the updated network topology as the communication topology in this cycle. Second, for the problem of 3D optimally persistent graph generation in each cycle, it is difficult to apply the existing algorithms due to the asymmetric link weights in the updated network topology. Therefore, an approximate algorithm is proposed based on the rigid matrix and arc adding operation. The time complexity of the algorithm is analyzed and its effectiveness is proved theoretically. Finally, the simulation results show that the proposed method can effectively reduce and balance the communication energy consumption of each agent. Compared with the average level of all the comparison methods, the formation keeping time increases by 29.5%, 59.4% and 72.01% when there are 5, 10 and 15 nodes, respectively.

参考文献

[1] DUTTA R, SUN L, PACK D. Adecentralized formation and network connectivity tracking controller for multiple unmanned systems[J]. IEEE Transactions on Control Systems Technology, 2018, 26(6): 2206-2213.
[2] SHAKOURI A. On theimpulsive formation control of spacecraft under path constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 3292-3302.
[3] 王祥科, 李迅, 郑志强. 多智能体系统编队控制相关问题研究综述[J]. 控制与决策, 2013, 28(11): 1601-1613. WANG X K, LI X, ZHENG Z Q. Survey of developments on multi-agent formation control related problems[J]. Control and Decision, 2013, 28(11): 1601-1613(in Chinese).
[4] VAN DEN BROEK T H A, VAN DE WOUW N, NIJMEIJER H. Formation control of unicycle mobile robots: A virtual structure approach[C]//Proceedings of the 48 h IEEE Conference on Decision and Control(CDC) Held Jointly with 200928th Chinese Control Conference. Piscataway: IEEE Press, 2009: 8328-8333.
[5] COOGAN S, ARCAK M. Scaling the size of a formation using relative position feedback[J]. Automatica, 2012, 48(10): 2677-2685.
[6] BABAZADEH R, SELMIC R. Distance-based multiagent formation control with energy constraints using SDRE[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1): 41-56.
[7] OH K K, PARK M C, AHN H S. A survey of multi-agent formation control[J]. Automatica, 2015, 53: 424-440.
[8] HOU Y, YU C B. Distance-based control of formations with hybrid communication topology[J]. International Journal of Robust and Nonlinear Control, 2018, 28(3): 881-900.
[9] ANDERSON B D O, YU C B, FIDAN B, et al. Rigid graph control architectures for autonomous formations[J]. IEEE Control Systems Magazine, 2008, 28(6): 48-63.
[10] HENDRICKX J M, ANDERSON B D O, DELVENNE J C, et al. Directed graphs for the analysis of rigidity andpersistence in autonomous agent systems[J]. International Journal of Robust and Nonlinear Control, 2007, 17(10-11): 960-981.
[11] MOU S S, BELABBAS M A, MORSE A S, et al. Undirectedrigid formations are problematic[J]. IEEE Transactions on Automatic Control, 2016, 61(10): 2821-2836.
[12] 周绍磊, 祁亚辉, 张雷, 等. 切换拓扑下无人机集群系统时变编队控制[J]. 航空学报, 2017, 38(4): 320452. ZHOU S L, QI Y H, ZHANG L, et al. Time-varying formation control of UAV swarm systems with switching topologies[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4): 320452(in Chinese).
[13] 董文奇, 何锋. 大规模UAV编队信息交互拓扑的分级分布式生成[J]. 航空学报, 2021, 42(6): 324380. DONG W Q, HE F. Hierarchical and distributed generation of information interaction topology for large scale UAV formation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 324380(in Chinese).
[14] SMITH B S, EGERSTEDT M, HOWARD A. Automaticgeneration of persistent formations for multi-agent networks under range constraints[J]. Mobile Networks and Applications, 2009, 14(3): 322-335.
[15] LUO X Y, SHAO S K, ZHANG Y Y, et al. Generation of minimally persistent circle formation for a multi-agent system[J]. Chinese Physics B, 2014, 23(2):028901.
[16] YU D X, CHEN C L P. Automaticleader-follower persistent formation generation with minimum agent-movement in various switching topologies[J]. IEEE Transactions on Cybernetics, 2020, 50(4): 1569-1581.
[17] LUO X Y, LI S B, GUAN X P. Automatic generation ofMin-weighted persistent formations[J]. Chinese Physics B, 2009, 18(8): 3104-3114.
[18] 罗小元, 杨帆, 李绍宝, 等. 多智能体系统的最优持久编队生成策略[J]. 自动化学报, 2014, 40(7): 1311-1319. LUO X Y, YANG F, LI S B, et al. Generation ofoptimally persistent formation for multi-agent systems[J]. Acta Automatica Sinica, 2014, 40(7): 1311-1319(in Chinese).
[19] WANG G Q, LUO H, HU X X. Generation of optimal persistent formations for heterogeneous multi-agent systems with a leader constraint[J]. Chinese Physics B,2018, 27(2): 028901.
[20] 王金然, 罗小元, 杨帆, 等. 三维最优持久编队拓扑生成策略[J]. 自动化学报, 2015, 41(6): 1123-1130. WANG J R, LUO X Y, YANG F, et al. Generationstrategy of optimal persistent formation topology in 3D space[J]. Acta Automatica Sinica, 2015, 41(6): 1123-1130(in Chinese).
[21] WANG G Q, LUO H, HU X X, et al. Communication topology optimization for three-dimensional persistent formation with leader constraint[J]. Optimization Letters, 2021, 15(2): 513-535.
[22] LUO X, LIU D, GUAN X, et al. Flocking in target pursuit for multi-agent systems with partial informed agents[J]. IET Control Theory & Applications, 2012, 6(4): 560.
[23] SUN H Y, SONG G M, WEI Z, et al. Energy-optimized consensus formation control for the time-delayed bilateral teleoperation system of UAVs[J]. International Journal of Aerospace Engineering, 2018: 1-22.
[24] YU C B, HENDRICKX J M, FIDAN B, et al. Three and higher dimensional autonomous formations: Rigidity, persistence and structural persistence[J]. Automatica, 2007, 43(3): 387-402.
[25] 罗小元, 闫彦霖, 郝丽娟, 等. 基于最优刚性图的能量有效分布式拓扑控制算法[J]. 通信学报, 2013, 34(12): 1-10. LUO X Y, YAN Y L, HAO L J, et al. Based on optimally rigid graph energy efficient distributed topology control algorithm[J]. Journal on Communications, 2013, 34(12): 1-10(in Chinese).
[26] 罗小元, 王慧彬, 王金然, 等. 基于最优刚性图的链路质量与能量的拓扑控制算法[J]. 控制与决策, 2015, 30(11): 2055-2060. LUO X Y, WANG H B, WANG J R, et al. Link quality and energy topology control algorithm based on optimally rigid graph[J]. Control and Decision, 2015, 30(11): 2055-2060(in Chinese).
文章导航

/