论文

一种改进的直方图概率多假设多目标跟踪方法

  • 张奕群 ,
  • 尹立凡 ,
  • 王硕 ,
  • 孙承钢
展开
  • 北京电子工程总体研究所, 北京 100854

收稿日期: 2020-10-09

  修回日期: 2020-12-12

  网络出版日期: 2021-02-02

基金资助

国家级项目

An improved histogram PMHT multi-target tracking method

  • ZHANG Yiqun ,
  • YIN Lifan ,
  • WANG Shuo ,
  • SUN Chenggang
Expand
  • Beijing Institute of Electronic System Engineering, Beijing 100854, China

Received date: 2020-10-09

  Revised date: 2020-12-12

  Online published: 2021-02-02

Supported by

National Level Project

摘要

直方图概率多假设跟踪(H-PMHT)方法及其变形泊松分布直方图概率多假设跟踪(P-HPMHT)方法的一个主要缺点是其量测模型仅考虑了背景杂波而没有考虑传感器噪声,从而导致在低信噪比条件下检测概率较低。针对这一问题,提出了一种带传感器噪声模型的H-PMHT方法,通过将传感器噪声引入量测模型,从而明显提高了对低信噪比目标的跟踪检测能力。该方法的计算量与目标数保持线性关系,仍然适用于目标数目较多的情况。仿真实验表明:该方法在误跟踪比率为1‰,信噪比为6 dB时,检测比率可提升近20%,信噪比为3 dB时,可提升近10%。

本文引用格式

张奕群 , 尹立凡 , 王硕 , 孙承钢 . 一种改进的直方图概率多假设多目标跟踪方法[J]. 航空学报, 2021 , 42(11) : 524851 -524851 . DOI: 10.7527/S1000-6893.2020.24851

Abstract

One of the main disadvantages of the Histogram Probability Multi-Hypothesis Tracking (H-PMHT) method and its variant Poisson distribution Histogram Probability Multi-Hypothesis Tracking (P-HPMHT) method is that their measurement model only considers the background clutter and does not consider the sensor noise, resulting in lower detection probability under low signal-to-noise ratio conditions. To overcome this problem, an improved H-PMHT with the sensor noise model is proposed. By introducing sensor noise into the measurement model, the ability to track and detect targets with low signal-to-noise ratio is significantly improved. The calculation amount of the method proposed maintains a linear relationship with the target number, and it is still suitable for the situation with many targets. Simulation experiments show that when the false tracking ratio is 1/1000, the detection rate of this method can be increased by nearly 20% when the signal-to-noise ratio is 6 dB, and by nearly 10% when it is 3 dB.

参考文献

[1] DAVEY S J, RUTTEN M G, GORDON N J. Track-before-detect techniques[M]//Integrated Tracking, Classification, and Sensor Management. Hoboken, New Jersey:John Wiley & Sons, Inc., 2014:311-362.
[2] BOERS Y, DRIESSEN H. Particle-filter-based track before detect algorithms[C]//Optical Science and Technology, SPIE's 48th Annual Meeting. Proc SPIE 5204, Signal and Data Processing of Small Targets. San Diego:SPIE, 2004:20-30.
[3] BARNIV Y. Dynamic programming solution for detecting dim moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, AES-21(1):144-156.
[4] Davey S J. Detecting a small boat using histogram PMHT[J]. Journal of Advanced Information Fusion, 2011, 6(2):167-186.
[5] STREIT R L. Tracking on intensity-modulated data streams[R]. Newport:Naval Undersea Warfare Center, 2000.
[6] DAVEY S J, GAETJENS H X. Track-before-detect using expectation maximisation[M]. Singapore:Springer Singapore, 2018.
[7] MCLACHLAN G J, JONES P N. Fitting mixture models to grouped and truncated data via the EM algorithm[J]. Biometrics, 1988, 44(2):571.
[8] LAN H, WANG X Z, PAN Q, et al. A survey on joint tracking using expectation-maximization based techniques[J]. Information Fusion, 2016, 30:52-68.
[9] GAETJENS H X, DAVEY S J, ARULAMPALAM S, et al. Histogram-PMHT for fluctuating target models[J]. IET Radar, Sonar & Navigation, 2017, 11(8):1292-1301.
[10] VU H X. Track-before-detect for active sonar[D]. Adelaide:The University of Adelaide, 2015:133-136.
[11] DAVEY S J, RUTTEN M G. A comparison of three algorithms for tracking dim targets[C]//2007 Information, Decision and Control. Piscataway:IEEE Press, 2007:342-347.
[12] WILLETT P, LUGINBUHL T, BAUM M. The GFMT HPMHT puzzle[C]//201518th International Conference on Information Fusion (Fusion). Piscataway:IEEE Press, 2015:338-345.
[13] YIN L F, ZHANG Y Q, WANG S, et al. A new histogram PMHT incorporating pixel noise distribution for dim target tracking[C]//SPIE Security+Defence. Proc SPIE 11158, Target and Background Signatures V, 2019.
[14] DUNHAM D T, OGLE T L, WILLETT P K, et al. Advancement of an algorithm[C]//SPIE Defense+Security. Proc SPIE 9092, Signal and Data Processing of Small Targets, 2014.
[15] WILLETT P, BALASINGAM B, DUNHAM D, et al. Multiple target tracking from images using the maximum likelihood HPMHT[C]//SPIE Optical Engineering+Applications. Proc SPIE 8857, Signal and Data Processing of Small Targets, 2013.
[16] 盛涛, 夏海宝, 杨永建, 等. 密集杂波环境下的简化JPDA多目标跟踪算法[J]. 信号处理, 2020, 36(8):1280-1287. SHENG T, XIA H B, YANG Y J, et al. A simplified JPDA multi-target tracking algorithm for dense clutter environment[J]. Journal of Signal Processing, 2020, 36(8):1280-1287(in Chinese).
[17] STREIT R L. Poisson point processes:imaging, tracking, and sensing[M]. Berlin:Springer Science and Business Media, 2010:30-33.
[18] BALASINGAM B. Detection of multiple targets in an image[C]//201821st International Conference on Information Fusion (FUSION). Piscataway:IEEE Press, 2018.
[19] GRANSTRÖM K, ORGUNER U. Estimation and maintenance of measurement rates for multiple extended target tracking[C]//201215th International Conference on Information Fusion. Piscataway:IEEE Press, 2012:2170-2176.
[20] 李乔. 组合数学基础[M]. 北京:高等教育出版社, 1993:14-15. LI Q. Fundamentals of combinatorial mathematics[M]. Beijing:Higher Education Press, 1993:14-15(in Chinese).
文章导航

/