电子电气工程与控制

基于自适应动态规划的运载火箭智能姿态容错控制

  • 梁小辉 ,
  • 胡昌华 ,
  • 周志杰 ,
  • 王青
展开
  • 1. 西北工业大学 自动化学院, 西安 710129;
    2. 火箭军工程大学 导弹工程学院, 西安 710025;
    3. 北京航空航天大学 自动化科学与工程学院, 北京 100191

收稿日期: 2020-10-22

  修回日期: 2020-12-18

  网络出版日期: 2021-01-26

基金资助

国家自然科学基金(61833016,61873295,61933010)

ADP-based intelligent attitude fault-tolerant control for launch vehicles

  • LIANG Xiaohui ,
  • HU Changhua ,
  • ZHOU Zhijie ,
  • WANG Qing
Expand
  • 1. School of Automation, Northwestern Polytechnical University, Xi'an 710072, China;
    2. College of Missile Engineering, Rocket Force University of Engineering, Xi'an 710025, China;
    3. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

Received date: 2020-10-22

  Revised date: 2020-12-18

  Online published: 2021-01-26

Supported by

National Natural Science Foundation of China (61833016, 61873295, 61933010)

摘要

针对运作火箭主动段发动机摆动执行机构故障下的姿态控制问题,结合自适应动态规划(ADP)方法设计了一种智能容错控制策略。该智能容错控制器主要包括2部分:容错稳定控制部分和优化补偿部分。容错稳定控制部分利用自适应和滑模变结构控制设计,主要维持执行机构故障下姿态控制系统的稳定,保证姿态跟踪误差的有限时间收敛;优化补偿部分采用执行-评价结构,利用ADP的在线学习优势,根据姿态系统的跟踪误差(尤其是系统故障、强干扰导致的跟踪偏差),设计ADP算法产生补偿控制来进一步优化姿态控制系统的跟踪性能。仿真验证表明,即使存在外部干扰和执行机构故障的情况下,所提方法仍能保证系统稳定且精确跟踪指令信号。

本文引用格式

梁小辉 , 胡昌华 , 周志杰 , 王青 . 基于自适应动态规划的运载火箭智能姿态容错控制[J]. 航空学报, 2021 , 42(4) : 524915 -524915 . DOI: 10.7527/S1000-6893.2020.24915

Abstract

This paper investigates the problem of attitude control for the launch vehicle with actuator faults. An Adaptive Dynamic Programming (ADP) based intelligent fault-tolerant control scheme is developed, which mainly includes two parts: the stable control part and optimization supplementary part. For the stable control part, the adaptive control technology and the sliding mode variable structure control are used to maintain stability of the fault-tolerant controller, so as to guarantee the stalibilty of the close-loop system and finite-time convergence of the tracking errors. An optimization supplementary controller with the actor-critic structure is also designed to further improve the attitude tracking performance and provide additional compensation control according to the tracking errors caused by actuator faults or external disturbances. The simulation results show that the proposed method can ensure the system stablility and accurate tacking of commands even when there exist malfunctions.

参考文献

[1] 鲁宇. 中国运载火箭技术发展[J]. 宇航总体技术, 2017, 1(3):1-8. LU Y. Space launch vehicle's development in China[J]. Astronautical Systems Enginerring Technology, 2017, 1(3):1-8(in Chinese).
[2] 杨泗智, 龚春林, 郝波, 等. 基于落点预测的高旋火箭弹弹道修正算法[J]. 航空学报, 2020, 41(2):323421. YANG S Z, GONG C L, HAO B, et al. Ballistic trajectory correction algorithms of high-spin rocket based on impact point prediction[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):323421(in Chinese).
[3] CELANI F. Global and robust attitude control of a launch vehicle in exoatmospheric flight[J]. Aerospace Science and Technology, 2018, 74:22-36.
[4] 宋征宇. 运载火箭远程故障诊断技术综述[J]. 宇航学报, 2016, 37(2):135-144. SONG Z Y. The survey of launch vehicle long distance fault diagnosis technique[J]. Journal of Astronautics, 2016, 37(2):135-144(in Chinese).
[5] 沈毅, 李利亮, 王振华. 航天器故障诊断与容错控制技术研究综述[J]. 宇航学报,2020, 41(6):647-656. SHEN Y, LI L L, WANG Z H. A review of fault diagnosis and fault-tolerant control techniques for spacecraft[J]. Journal of Astronautics, 2020, 41(6):647-656(in Chinese).
[6] YIN S, XIAO B, DING S T, et al. A review on recent development of spacecraft attitude fault tolerant control system[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5):3311-3320.
[7] 邵书义, 陈谋, 招启军. 基于干扰观测器的四旋翼无人机离散时间容错控制[J]. 航空学报, 2020, 41(S2):724283(in Chinese). SHAO S Y, CHEN M, ZHAO Q J. Discrete-time fault-tolerant control for quadrotor UAV based on disturbance observer[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2):724283.
[8] 朱海洋, 吴燕生, 容易, 等. 适应有限故障的运载火箭神经网络自适应容错控制[J]. 西北工业大学学报, 2020, 38(3):668-676. ZHUHY,WUYS,RONGY,et al. Aneuralnetwork adaptive fault-olerant controlmethod for launch vehicles with the limitedfaults[J]. Journal of NorthwesternPolytechnical University, 2020, 38(3):668-676(in Chinese).
[9] ZHANG L, WEI C, WU R, et al. Adaptive fault-tolerant control for a VTVL reusable launch vehicle[J]. Acta Astronautica, 2019, 159:362-370.
[10] ZHANG L, WEI C Z, WU R, et al. Fixed-time extended state observer based non-singular fast terminal sliding mode control for a VTVL reusable launch vehicle[J]. Aerospace Science and Technology, 2018, 82-83:70-79.
[11] 王乾, 李清, 程农, 等. 一种针对结构损伤的非线性容错飞行控制方法[J]. 航空学报, 2016, 37(2):637-647. WANG Q, LI Q, CHENG N, et al. A nonlinear fault tolerant flight control method against structural damage[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):637-647(in Chinese).
[12] SHEN Q, WANG D W, ZHU S, et al. Integral-type sliding mode fault-tolerant control for attitude stabilization of spacecraft[J]. IEEE Transactions on Control System Technology, 2015, 23(3):1131-1138.
[13] SHEN Q, WANG D W, ZHU S, et al. Finite-time fault-tolerant attitude stabilization for spacecraft with actuator saturation[J]. IEEE Transactions on Aerospace Electronic System, 2015, 51(3):2390-2405.
[14] BERTSEKAS D, Value and policy iterations in optimal control and adaptive dynamic programming[J]. IEEE Transactions on Neural Network and Learning System, 2015, 28(3):500-509.
[15] 孙景亮, 刘春生. 基于自适应动态规划的导弹制导律研究综述[J]. 自动化学报, 2017, 43(7):1101-1113. SUN J L, LIU C S. An Overview on the Adaptive Dynamic Programming Based Missile Guidance Law[J]. Acta Automatica Sinica, 2017, 43(7):1101-1113(in Chinese).
[16] 张化光, 张欣,罗艳红, 等. 自适应动态规划综述[J]. 自动化学报, 2013, 39(4):303-311. ZHANG H G, ZHANG X, LUO Y H, et al. An overview of research on adaptive dynamic programming[J]. Acta Automatica Sinica, 2013, 39(4):303-311(in Chinese).
[17] ZHAO B, LIU D, YANG X, et al. Observer-critic structure-based adaptive dynamic programming for decentralized tracking control of unknown large-scale nonlinear systems[J]. International Journal of System Science, 2017, 48(9):1978-1989.
[18] ZHOU Y, KAMPEN E, CHU Q. Nonlinear adaptive flight control using incremental approximate dynamic programming and output feedback[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(2):493-496.
[19] MU C, NI Z, SUN C, et al. Air-breathing hypersonic vehicle tracking control based on adaptive dynamic programming[J]. IEEE Transactions on Neural Network and Learning System, 2016, 28(3):584-598.
[20] ZHAO D J, WANG Y J, LIU L, et al. Robust fault-tolerant control of launch vehicle via GPI observer and integral sliding mode control[J]. Asian Journal of Control, 2013, 15(2):614-623.
[21] 杨希祥, 张为华. 小型固体运载火箭六自由度弹道仿真[J]. 航空学报, 2010, 31(1):41-47. YANG X X, ZHANG W H. Six-Degree-of-Freedom Trajectory Simulation of Small Solid Launch Vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1):41-47(in Chinese).
[22] 韩治国, 张科, 吕梅柏, 等. 航天器自适应快速非奇异终端滑模容错控制[J]. 航空学报, 2016, 37(10):3092-3100. HAN Z G, ZHANG K, LYU M B, et al. Spacecraft fault-tolerant control using adaptive non-singular fast terminal sliding mode[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3092-3100(in Chinese).
[23] GAO Z F, ZHOU Z P, QIAN M S, et al. Active fault tolerant control scheme for satellite attitude system subject to actuator time-varying faults[J]. IET Control Theory Applications, 2018, 12(3):405-412.
[24] GOU Y Y, LI H B, DONG X M, et al. Constrained adaptive neural network control of an MIMO aeroelastic system with input nonlinearities[J]. Chinese Journal of Aeronautics, 2017, 30(2):796-806.
[25] XU B. Composite learning finite-time control with application to quadrotors[J]. IEEE Transactions on Systems, Man, and Cybernetics:System, 2018, 48(10):1806-1815.
[26] HEYDARI A. Theoretical and numerical analysis of approximate dynamic programming with approximation errors[J]. Journal of Guidance, Control, and Dynamics, 39(2):301-311.
[27] GONG L G, WANG Q, DONG C Y. Spacecraft output feedback attitude control based on extended state observer and adaptive dynamic programming[J]. Journal of the Franklin Institute, 2019, 356(10):4971-5000.
[28] WANG Q, GONG L G, DONG C Y, et al. Morphing aircraft control based on switched nonlinear systems and adaptive dynamic programming[J]. Aerospace Science and Technology, 2019, 93:105325.
文章导航

/