电子电气工程与控制

机载导航卫星反射信号海面高度测量

  • 王峰 ,
  • 杨东凯 ,
  • 张国栋 ,
  • 张波
展开
  • 北京航空航天大学 电子与信息工程学院, 北京 100191

收稿日期: 2020-10-10

  修回日期: 2021-01-27

  网络出版日期: 2021-01-26

基金资助

国家自然科学基金(41774028);博士后创新人才支持计划(BX20200039)

Measurement of sea surface height using airborne global navigation satellites system reflectometry

  • WANG Feng ,
  • YANG Dongkai ,
  • ZHANG Guodong ,
  • ZHANG Bo
Expand
  • School of Electronic and Information Engineering, Beihang University, Beijing 100191, China

Received date: 2020-10-10

  Revised date: 2021-01-27

  Online published: 2021-01-26

Supported by

National Natural Science Foundation of China(41774028); Program for China Postdoctoral Innovative Talents Science(BX20200039)

摘要

对机载导航卫星反射信号海面高度测量模型、定点跟踪和模型拟合2种估计反射相对于直射信号时延的方法以及误差校正进行了研究。针对Z-V模型拟合法进行时延估计复杂度高的特点,提出了7-β模型和相应的时延估计方法;为消除定点跟踪法估计的时延中的海况偏差,提出了查表法和加权平均结合的校正方法。利用2015年12月3日CSIC-IEEC在波罗的海采集的机载数据进行了海面高度反演。结果表明通过已有时延估计方法和所提出的7-β模型拟合法对GPS L1和Galileo E1反射信号进行时延估计,并通过提出的误差校正算法对海况误差进行校正后可得到精度为亚米级海面高度。

本文引用格式

王峰 , 杨东凯 , 张国栋 , 张波 . 机载导航卫星反射信号海面高度测量[J]. 航空学报, 2022 , 43(1) : 324852 -324852 . DOI: 10.7527/S1000-6893.2020.24852

Abstract

This paper studies the measuring model of sea surface height using the airborne GNSS reflectometry, the estimation method of the delay between direct and reflected signals based on point tracking and model fitting, and error calibration. For the problem of high computational complexity of Z-V model fitting, a new fitting model named as 7-β model is proposed used to compute the delay between direct and reflected GNSS signal. In addition, an error calibration method is developed using the looking-up table and weighted averaging to correct the delay bias caused by the sea state. The validation is implemented utilizing the experimental data acquired by CSIC-IEEC in the Baltic Sea on December 3rd, 2015. The results show that the decimeter-level sea surface height can be obtained by using the existing and proposed methods to estimate the delay between direct and reflected GPS L1 and Galileo E1 signals and then using the proposed approach to correct the delay bias caused by the sea state.

参考文献

[1] MARIN-NEIRA M. A passive reflectometry and interferometry system(PARIS): Application to ocean altimetry[J]. ESA journal, 1993, 17(4): 331-355.
[2] RUF C S, ATLAS R, CHANG P S, et al. Newocean winds satellite mission to probe hurricanes and tropical convection[J]. Bulletin of the American Meteorological Society, 2016, 97(3): 385-395.
[3] GARRISON J L, KOMJATHY A, ZAVOROTNY V U, et al. Wind speed measurement using forward scattered GPS signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(1): 50-65.
[4] ALONSO-ARROYO A, ZAVOROTNY V U, CAMPS A. Seaice detection using U.K. TDS-1 GNSS-R data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9): 4989-5001.
[5] KATZBERG S J, TORRES O, GRANT M S, et al. Utilizing calibrated GPS reflected signals to estimate soil reflectivity and dielectric constant: Results from SMEX02[J]. Remote Sensing of Environment, 2006, 100(1): 17-28.
[6] FOTI G, GOMMENGINGER C, JALES P, et al. Spaceborne GNSS reflectometry for ocean winds: First results from the UKTechDemoSat-1 mission[J]. Geophysical Research Letters, 2015, 42(13): 5435-5441.
[7] RUF C S, GLEASON S, JELENAK Z, et al. The CYGNSS nanosatellite constellation hurricane mission[C]//2012 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2012: 214-216.
[8] JING C,NIU X L, DUAN C D, et al. Sea surface wind speed retrieval from the first Chinese GNSS-R mission: Technique and preliminary results[J]. Remote Sensing, 2019, 11(24): 3013.
[9] ICHIKAWA K, EBINUMA T, KONDA M, et al. Low-cost GNSS-R altimetry on a UAV for water-level measurements at arbitrary times and locations[J]. Sensors, 2019, 19(5): 998.
[10] 李惟, 朱云龙, 王峰, 等. GNSS多径信号模型及测高方法[J]. 北京航空航天大学学报(自然科学版), 2018, 44(6): 1239-1245. LI W, ZHU Y L, WANG F, et al. GNSS multipath signal model and altimetry method[J]. Journal of Beijing University of Aeronautics and Astronautics (Natural Science Edition), 2018, 44(6): 1239-1245(in Chinese).
[11] CARDELLACH E, RIUS A,MARTÍN-NEIRA M, et al. Consolidating the precision of interferometric GNSS-R ocean altimetry using airborne experimental data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4992-5004.
[12] RIUS A, NOGUÉS-CORREIG O, RIBÓ S, et al. Altimetry with GNSS-R interferometry: First proof of concept experiment[J]. GPS Solutions, 2012, 16(2): 231-241.
[13] CARRENO-LUENGO H, CAMPS A, RAMOS-PÉREZ I, et al. Experimental evaluation of GNSS-reflectometry altimetric precision using the P(Y) and C/A signals[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(5): 1493-1500.
[14] LOWE S T, MEEHAN T, YOUNG L. Direct signal enhanced semicodeless processing of GNSS surface-reflected signals[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(5): 1469-1472.
[15] LI W Q, YANG D K, D’ADDIO S, et al. Partial interferometric processing of reflected GNSS signals for ocean altimetry[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(9): 1509-1513.
[16] MASHBURN J, AXELRAD P, T LOWE S, et al. An assessment of the precision and accuracy of altimetry retrievals for a Monterey bay GNSS-R experiment[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4660-4668.
[17] LI W Q, RIUS A, FABRA F, et al. Revisiting the GNSS-R waveform statistics and its impact on altimetric retrievals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5): 2854-2871.
[18] WU F, ZHENG W, LI Z W, et al. Improving the GNSS-R specular reflection point positioning accuracy using the gravity field normal projection reflection reference surface combination correction method[J]. Remote Sensing, 2018, 11(1): 33.
[19] RIUS A, CARDELLACH E, MARTIN-NEIRA M. Altimetric analysis of the sea-surface GPS-reflected signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 2119-2127.
[20] PASCUAL D, CAMPS A, MARTIN F, et al. Precision bounds in GNSS-R ocean altimetry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(5): 1416-1423.
[21] POWELL S J, AKOS D M,BACKÉN S. Altimetry using gnss reflectrometry for L5[C]//2012 6th ESA Workshop on Satellite Navigation Technologies(Navitec 2012) & European Workshop on GNSS Signals and Signal Processing. Piscataway: IEEE Press, 2012: 1-6.
[22] 杨东凯, 王峰. GNSS反射信号海洋遥感方法及应用[M]. 北京: 科学出版社, 2020. YANG D K, WANG F. Sea remote sensing method and application of GNSS reflectometry[M]. Beijing: Science Press, 2020(in Chinese).
[23] RODRÍGUEZ E. Altimetry for non-Gaussian oceans: Height biases and estimation of parameters[J]. Journal of Geophysical Research: Oceans, 1988, 93(C11): 14107-14120.
[24] ZAVOROTNY V U, VORONOVICH A G. Scattering of GPS signals from the ocean with wind remote sensing application[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 951-964.
[25] VORONOVICH A G, ZAVOROTNY V U. Bistatic radar equation for signals of opportunity revisited[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 1959-1968.
[26] LEE H K. Radar altimetry methods for solid earth geodynamics studies[D]. Columbus: Ohio State University, 2008.
[27] 张益强. 基于GNSS反射信号的海洋微波遥感技术[D]. 北京:北京航空航天大学,2008: 99. ZHANG Y Q. Microwave remote sensing of ocean using GNSS reflection signal[D]. Beijing: Beihang University, 2008: 99(in Chinese).
[28] 海阳. 北欧潜艇王国瑞典潜艇发展寻思[J]. 舰载武器, 2004(7): 50-55. HAI Y. Thinking about the development of Swedish submarine in the Nordic submarine Kingdom[J]. Shipborne Weapons, 2004(7): 50-55(in Chinese).
[29] 张云, 张杨阳, 孟婉婷, 等. 机载GNSS反射信号海面测高模型的研究[J]. 海洋学报, 2020, 42(3): 149-156. ZHANG Y, ZHANG Y Y, MENG W T, et al. Research on sea surface altimetry model of airborne GNSS reflected signal[J]. Acta Oceanologica Sinica, 2020, 42(3): 149-156(in Chinese).
文章导航

/