先进航空材料焊接/连接专栏

基于同质摩擦的涡流搅拌摩擦焊工艺

  • 刘小超 ,
  • 甄云乾 ,
  • 何欣沅 ,
  • 陈海燕 ,
  • 申志康
展开
  • 1. 东南大学 机械工程学院, 南京 211189;
    2. 西北工业大学 陕西省摩擦焊接工程技术重点实验室, 西安 710072

收稿日期: 2020-11-26

  修回日期: 2020-12-21

  网络出版日期: 2021-01-21

基金资助

国家自然科学基金(51905437);中国博士后科学基金(2019M653726)

Vortex- friction stir welding process based on internal friction between identical materials

  • LIU Xiaochao ,
  • ZHEN Yunqian ,
  • HE Xinyuan ,
  • CHEN Haiyan ,
  • SHEN Zhikang
Expand
  • 1. School of Mechanical Engineering, Southeast University, Nanjing 211189, China;
    2. Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2020-11-26

  Revised date: 2020-12-21

  Online published: 2021-01-21

Supported by

National Natural Science Foundation of China (51905437); China Postdoctoral Science Foundation (2019M653726)

摘要

涡流搅拌摩擦焊(VFSW)是一项新近提出的改型工艺,其利用与工件材料同材质的棒材和外加的支撑套筒作为搅拌工具进行搅拌摩擦焊接,有望在高熔点金属的固相连接、焊接修复等领域取得工程应用。研究了转速对6061铝合金涡流搅拌摩擦焊焊缝成形和接头力学性能的影响规律。试验结果表明,在30 mm/min的焊接速度下,当转速较低时焊缝背部出现弱连接,接头强度较低;当转速较高时因工件和搅拌工具之间的界面打滑而难以形成有效的涡流式材料流动,导致焊缝无法有效成形,出现表面线状缺陷;在400~800 r/min的转速范围内,可获得良好的焊接接头。随转速增加,焊核区体积先增大后减小,但热影响区体积逐渐增大。在完全焊透的前提下,热影响区是接头软化最严重的区域,同时也是拉伸试样的断裂部位。随转速提高,接头抗拉强度先升高后降低,断后延伸率则相反。试验参数下接头的最大抗拉强度为174.8 MPa,对应的断后延伸率为6.5%。

本文引用格式

刘小超 , 甄云乾 , 何欣沅 , 陈海燕 , 申志康 . 基于同质摩擦的涡流搅拌摩擦焊工艺[J]. 航空学报, 2022 , 43(2) : 625012 -625012 . DOI: 10.7527/S1000-6893.2021.25012

Abstract

Vortex- Friction Stir Welding (VFSW) is a newly proposed modified process, which uses a stir bar made by the material identical with the workpiece and a non-consumable holder as the friction stir tool to perform FSW. It has great potential in welding high-melting point metals and welding repair. This paper investigated the effect of rotating speed on weld formation and joint mechanical properties in VFSW of 6061 aluminium alloy. The experimental results show that at a welding speed of 30 mm/min, if the rotation speed was too low, the "kissing bond" defect appeared in the weld bottom and thus the joint strength was relatively low; if the rotation speed was too high, it was difficult to form vortex material flow due to the interface slip between the workpiece and the stir bar, so that surface linear defects appeared as the welding process cannot run. At the rotation speeds of 400-800 r/min, good weld formation could be obtained. With the increase in rotation speed, the volume of weld nugget zone first increased and then decreased, but the volume of heat affected zone gradually increased. For the defect-free weld joint, the heat affected zone was the most severely softened region of the joint, and the fracture location of the tensile specimen. With the increase in rotation speed, the ultimate tensile strength of the joint increased first, and then decreased. On the contrary, the elongation first decreased and then increased. Under the experimental conditions, the maximum ultimate tensile strength of the joint was 174.8 MPa, and the corresponding elongation of the joint was 6.5%.

参考文献

[1] PADHY G K, WU C S, GAO S. Friction stir based welding and processing technologies-processes, parameters, microstructures and applications:A review[J].Journal of Materials Science & Technology, 2018, 34(1):1-38.
[2] MISHRA R S, MA Z Y. Friction stir welding and processing[J].Materials Science and Engineering:Reports, 2005, 50(1-2):1-78.
[3] 黄永宪, 陈磊, 谢聿铭, 等. 搅拌摩擦焊缝缺陷固相修复技术研究进展[J].辽宁石油化工大学学报, 2019, 39(2):88-93. HUANG Y X, CHEN L, XIE Y M, et al. Research progress of solid phase repair technology for friction stir weld defects[J].Journal of Liaoning Shihua University, 2019, 39(2):88-93(in Chinese).
[4] 周利, 周炜璐, 张嘉伦, 等. 搅拌摩擦焊匙孔修复技术研究现状[J].航空制造技术, 2016, 59(14):75-79, 92. ZHOU L, ZHOU W L, ZHANG J L, et al. Research status of exit hole repairing technology for friction stir welding[J].Aeronautical Manufacturing Technology, 2016, 59(14):75-79, 92(in Chinese).
[5] BUCHIBABU V, REDDY G M, DE A. Probing torque, traverse force and tool durability in friction stir welding of aluminum alloys[J].Journal of Materials Processing Technology, 2017, 241:86-92.
[6] ARORA A, MEHTA M, DE A, et al. Load bearing capacity of tool pin during friction stir welding[J].The International Journal of Advanced Manufacturing Technology, 2012, 61(9):911-920.
[7] 魏诗萌, 孙杨, 王福山, 等. 搅拌摩擦焊搅拌头疲劳寿命的模拟研究[J].焊接技术, 2019, 48(4):5-9, 113. WEI S M, SUN Y, WANG F S, et al. Simulation study on fatigue life of friction stir welding tools[J].Welding Technology, 2019, 48(4):5-9, 113(in Chinese).
[8] SIDDIQUEE A N, PANDEY S. Experimental investigation on deformation and wear of WC tool during friction stir welding (FSW) of stainless steel[J].The International Journal of Advanced Manufacturing Technology, 2014, 73(1-4):479-486.
[9] WANG J Y, SU J Q, MISHRA R S, et al. Tool wear mechanisms in friction stir welding of Ti-6Al-4V alloy[J].Wear, 2014, 321:25-32.
[10] WU L H, WANG D, XIAO B L, et al. Tool wear and its effect on microstructure and properties of friction stir processed Ti-6Al-4V[J].Materials Chemistry and Physics, 2014, 146(3):512-522.
[11] SONG K H, NAKATA K. Effect of precipitation on post-heat-treated Inconel 625 alloy after friction stir welding[J].Materials & Design, 2010, 31(6):2942-2947.
[12] RAI R, DE A, BHADESHIA H K D H, et al. Review:Friction stir welding tools[J].Science and Technology of Welding and Joining, 2011, 16(4):325-342.
[13] LIU X C, ZHEN Y Q, SHEN Z K, et al. A modified friction stir welding process based on vortex material flow[J].Chinese Journal of Mechanical Engineering, 2020, 33(1):90.
[14] 刘小超, 甄云乾, 王啸, 等. 一种用于摩擦焊的旋转焊具及焊接方法:CN110524105A[P]. 2019-12-03. LIU X C, ZHEN Y Q, WANG X, et al. Rotary welding tool for friction welding and welding method:CN110524105A[P]. 2019-12-03(in Chinese).
[15] YU H Z, MISHRA R S. Additive friction stir deposition:A deformation processing route to metal additive manufacturing[J].Materials Research Letters, 2021, 9(2):71-83.
[16] LI W Y, LI J F, ZHANG Z H, et al. Pinless friction stir welding of AA2024-T3 joint and its failure modes[J].Transactions of Tianjin University, 2014, 20(6):439-443.
[17] 栾国红, 李光, 王卫兵, 等. 塑流摩擦焊技术[J].焊接学报, 2010, 31(8):1-4, 8, 113. LUAN G H, LI G, WANG W B, et al. Fundamental technology of friction flow welding[J].Transactions of the China Welding Institution, 2010, 31(8):1-4, 8, 113(in Chinese).
[18] 周平, 戴启雷, 张元杰. S线微观形貌对搅拌摩擦焊接头力学性能的影响[J].热加工工艺, 2019, 48(21):49-52, 57. ZHOU P, DAI Q L, ZHANG Y J. Effect of S curve micro-morphology on mechanical properties of friction stir welded joint[J].Hot Working Technology, 2019, 48(21):49-52, 57(in Chinese).
[19] 张航, 宫文彪, 赵立哲, 等. 6082-T6铝合金搅拌摩擦焊"S"线的形成及其对接头组织性能的影响[J].热加工工艺, 2020, 49(23):23-26. ZHANG H, GONG W B, ZHAO L Z, et al. Formation of "S" line and its influences on microstructure and properties of friction stir welded 6082-T6 aluminum alloy[J].Hot Working Technology, 2020, 49(23):23-26(in Chinese).
[20] 戴明亮, 胡志力, 万心勇, 等. S线对搅拌摩擦焊热处理接头力学性能的影响[J].金属热处理, 2017, 42(7):46-50. DAI M L, HU Z L, WAN X Y, et al. Effect of zigzag line on mechanical properties of joint after friction stir welding and heat treatment[J].Heat Treatment of Metals, 2017, 42(7):46-50(in Chinese).
[21] SATO Y S, KOKAWA H, ENOMOTO M, et al. Microstructural evolution of 6063 aluminum during friction-stir welding[J].Metallurgical and Materials Transactions A, 1999, 30(9):2429-2437.
[22] LIU F C, MA Z Y. Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminum alloy[J].Metallurgical and Materials Transactions A, 2008, 39(10):2378-2388.
[23] LIU H J, HOU J C, GUO H. Effect of welding speed on microstructure and mechanical properties of self-reacting friction stir welded 6061-T6 aluminum alloy[J].Materials & Design, 2013, 50:872-878.
[24] RAJAKUMAR S, MURALIDHARAN C, BALASUBRAMANIAN V. Establishing empirical relationships to predict grain size and tensile strength of friction stir welded AA 6061-T6 aluminium alloy joints[J].Transactions of Nonferrous Metals Society of China, 2010, 20(10):1863-1872.
[25] LIU F J, FU L, CHEN H Y. Effect of high rotational speed on temperature distribution, microstructure evolution, and mechanical properties of friction stir welded 6061-T6 thin plate joints[J].The International Journal of Advanced Manufacturing Technology, 2018, 96(5):1823-1833.
[26] LI D X, YANG X Q, CUI L, et al. Effect of welding parameters on microstructure and mechanical properties of AA6061-T6 butt welded joints by stationary shoulder friction stir welding[J].Materials & Design, 2014, 64:251-260.
[27] ZHOU L, ZHANG R X, HU X Y, et al. Effects of rotation speed of assisted shoulder on microstructure and mechanical properties of 6061-T6 aluminum alloy by dual-rotation friction stir welding[J].The International Journal of Advanced Manufacturing Technology, 2019, 100(1-4):199-208.
[28] ZHOU N, SONG D F, QI W J, et al. Influence of the kissing bond on the mechanical properties and fracture behaviour of AA5083-H112 friction stir welds[J].Materials Science and Engineering:A, 2018, 719:12-20.
[29] KADLEC M, R AŮŽEK R, NOVÁKOVÁ L. Mechanical behaviour of AA 7475 friction stir welds with the kissing bond defect[J].International Journal of Fatigue, 2015, 74:7-19.
[30] 毛育青, 江周明, 刘奋成, 等. 7075-T6铝合金厚板FSW焊缝沿厚度方向上的显微组织演变规律[J].航空学报, 2019, 40(5):422640. MAO Y Q, JIANG Z M, LIU F C, et al. Microstructure evolution rule along weld thickness direction of FSW 7075-T6 aluminum alloy thick plate[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(5):422640(in Chinese).
文章导航

/