固体力学与飞行器总体设计

分布式涵道风扇喷流对后置机翼的气动性能影响

  • 张阳 ,
  • 周洲 ,
  • 郭佳豪
展开
  • 西北工业大学 航空学院, 西安 710072

收稿日期: 2020-11-17

  修回日期: 2020-12-21

  网络出版日期: 2021-01-21

基金资助

陕西省重点研发项目(2021ZDLGY09-08);太仓创新引领专项计划(TC2018DYDS24)

Effects of distributed electric propulsion jet on aerodynamic performance of rear wing

  • ZHANG Yang ,
  • ZHOU Zhou ,
  • GUO Jiahao
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2020-11-17

  Revised date: 2020-12-21

  Online published: 2021-01-21

Supported by

Key R & D Project of Shaanxi Province (2021ZDLGY09-08); Taicang Innovation Leading Institute Project (TC2018-DYDS24)

摘要

以分布式电推进(DEP)垂直起降(VTOL)无人机(UAVs)为研究背景,采用基于混合网格技术及k-ω SST湍流模型求解雷诺平均Navier-Stokes (RANS)方程的多重参考系(MRF)/动量源方法(MSM),对分布式涵道风扇-机翼构型的喷流气动特性进行了高精度准定常的数值模拟。通过对涵道单元/涵道-机翼的实验验证了零来流条件下数值计算方法的可靠性和高效性,进而对分布式涵道风扇-机翼构型的气动优势进行了分析讨论,最后对分布式涵道风扇的转速、间距、涵道风扇旋转方向等因素进行了数值模拟。研究表明:相比于单个涵道风扇,分布式涵道风扇通过喷流的耦合作用大大提升了机翼的气动特性;分布式涵道风扇不同转速的喷流对截面翼型的压力分布和周围流场的速度分布影响具有一定的相似性,但具体数值随转速变化;分布式涵道风扇间距的增大会改善涵道风扇单元的拉力特性,机翼的气动特性会随之降低;涵道风扇合理的旋转方向不仅会使得下翼面喷流区域的高压过渡更加平缓,静压数值更加连续,而且内侧涵道风扇也会被外侧喷流所激励,对机翼的升力特性产生更好的诱导效果。

本文引用格式

张阳 , 周洲 , 郭佳豪 . 分布式涵道风扇喷流对后置机翼的气动性能影响[J]. 航空学报, 2021 , 42(9) : 224977 -224977 . DOI: 10.7527/S1000-6893.2020.24977

Abstract

Based on the research of the Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicles (UAVs) with Distributed Electric Propulsion (DEP), high-precision quasi-steady numerical simulation of the jet flow aerodynamic effects of different DEP-wing configurations are conducted using the Reynolds-Averaged Navier-Stokes (RANS) equations of the Multiple Reference Frame (MRF)/Momentum Source Method (MSM) based on the hybrid grid technology and k-ω SST turbulence model. The reliability and efficiency of the numerical method under the zero-velocity freestream condition are verified by the experiment of solo ducted fan/ducted fan and wing configurations. The aerodynamic advantages of the DEP-wing configuration are then analyzed. Finally, the rotating speed, spacing of the DEP and the rotating direction of the ducted fan are numerically simulated. Results show that the aerodynamic characteristics of the wing are significantly improved by the jet coupling effect of the DEP, compared with the solo ducted fan; the aerodynamic characteristics of the wing are similar at different rotating speeds of the DEP; the dynamic characteristics of the ducted fan will be improved with the increase of the spacing of the DEP, while those of the wing will be reduced; the reasonable rotation direction of the ducted fan enables smoother high pressure transition in the lower wing jet area and more continuous static pressure values; in addition, the inner ducted fan is motivated by the side jet flow, producing a better induction effect on the lift characteristics of the wing.

参考文献

[1] 刘凯, 叶赋晨. 垂直起降飞行器的发展动态和趋势分析[J]. 航空工程进展, 2015, 6(2):127-138, 159. LIU K, YE F C. Review and analysis of recent developments for VTOL vehicles[J]. Advances in Aeronautical Science and Engineering, 2015, 6(2):127-138, 159(in Chinese).
[2] 张啸迟, 万志强, 章异嬴, 等. 旋翼固定翼复合式垂直起降飞行器概念设计研究[J]. 航空学报, 2016, 37(1):179-192. ZHANG X C, WAN Z Q, ZHANG Y Y, et al. Conceptual design of rotary wing and fixed wing compound VTOL aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):179-192(in Chinese).
[3] KOHLMAN D L. Introduction to V/STOL airplanes[M]. Ames:Iowa State University Press, 1981.
[4] KIM H D, PERRY A T, ANSELL P J. A review of distributed electric propulsion concepts for air vehicle technology[C]//2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). Piscataway:IEEE, 2018:1-21.
[5] 黄俊. 分布式电推进飞机设计技术综述[J]. 航空学报, 2021, 42(3):624037. HUANG J. Survey on design technology of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3):624037(in Chinese).
[6] NALIANDA D, SINGH R. Turbo-electric distributed propulsion-Opportunities, benefits and challenges[J]. Aircraft Engineering and Aerospace Technology, 2014, 86(6):543-549.
[7] ZHANG Y, ZHOU Z, WANG K L, et al. Aerodynamic characteristics of different airfoils under varied turbulence intensities at low Reynolds numbers[J]. Applied Sciences, 2020, 10(5):1706.
[8] 王科雷, 祝小平, 周洲, 等. 低雷诺数分布式螺旋桨滑流气动影响[J]. 航空学报, 2016, 37(9):2669-2678. WANG K L, ZHU X P, ZHOU Z, et al. Distributed electric propulsion slipstream aerodynamic effects at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2669-2678(in Chinese).
[9] KIM H, LIOU M S. Flow simulation and optimal shape design of N3-X hybrid wing body configuration using a body force method[J]. Aerospace Science and Technology, 2017, 71:661-674.
[10] LIOU M F, KIM H, LEE B J, et al. Aerodynamic design of integrated propulsion-airframe configuration of the hybrid wingbody aircraft:AIAA-2017-3411[R]. Reston:AIAA, 2017.
[11] RODRIGUEZ D L. Multidisciplinary optimization method for designing boundary-layer-ingesting inlets[J]. Journal of Aircraft, 2009, 46(3):883-894.
[12] LUNDBLADH A. Distributed propulsion and turbo-fan scale effects[C]//17th Symposium on Airbreathing Engine, 2005.
[13] WICK A T, HOOKER J R, ZEUNE C H. Integrated aerodynamic benefits of distributed propulsion:AIAA-2015-1500[R]. Reston:AIAA, 2015.
[14] PERRY A T, ANSELL P J, KERHO M F. Aero-propulsive and propulsor cross-coupling effects on a distributed propulsion system[J]. Journal of Aircraft, 2018, 55(6):2414-2426.
[15] KERHO M F. Aero-propulsive coupling of an embedded, distributed propulsion system:AIAA-2015-3162[R]. Reston:AIAA, 2015.
[16] MARCOS J, MARSHALL D. Computational and experimental comparison of a powered lift, upper surface blowing configuration:AIAA-2010-0502[R]. Reston:AIAA, 2010.
[17] MAITA M, TORISAKI T, MATSUKI M. Effect of side fences on powered-lift augmentation for USB configurations[J]. Journal of Aircraft, 1982, 19(5):364-367.
[18] 焦予秦, 程玉庆, 金承信. 机翼喷流增升机理的风洞试验研究[J]. 实验流体力学, 2008, 22(2):20-24. JIAO Y Q, CHENG Y Q, JIN C X. Wind tunnel experimental research on lift-enhancing mechanism of jet on wing of aircraft[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(2):20-24(in Chinese).
[19] 龚志斌, 李杰, 蒋胜矩, 等. 大型运输机动力增升喷流效应数值模拟[J]. 航空动力学报, 2016, 31(8):1811-1819. GONG Z B, LI J, JIANG S J, et al. Numerical simulation of powered high-lift jet effects for large transport[J]. Journal of Aerospace Power, 2016, 31(8):1811-1819(in Chinese).
[20] 白俊强, 张晓亮, 刘南, 等. 考虑动力影响的大型运输机增升构型气动特性研究[J]. 空气动力学学报, 2014, 32(4):499-505. BAI J Q, ZHANG X L, LIU N, et al. The research of aerodynamic characteristics of high-lift configuration of large transport plane with the effect of engine jet[J]. Acta Aerodynamica Sinica, 2014, 32(4):499-505(in Chinese).
[21] LI J, GONG Z B, ZHANG H, et al. Numerical investigation of powered high-lift model with externally blown flap[J]. Journal of Aircraft, 2017, 54(4):1539-1551.
[22] ENGLAR R, BLAYLOCK G, GAETA R, et al. Recent experimental development of circulation control airfoils and pneumatic powered-lift systems:AIAA-2010-0345[R]. Reston:AIAA, 2010.
[23] PFINGSTEN K C, RADESPIEL R. Experimental and numerical investigation of a circulation control airfoil:AIAA-2009-0533[R]. Reston:AIAA, 2009.
[24] DUMAKUDE N, KAMPER M J. Validation of BEM using CFD MRF coupled with axial and radial induction factors:AIAA-2017-3484[R]. Reston:AIAA, 2017.
[25] 徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的机翼气动优化设计[J]. 航空学报, 2014, 35(11):2910-2920. XU J K, BAI J Q, HUANG J T, et al. Aerodynamic optimization design of wing under the interaction of propeller slipstream[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2910-2920(in Chinese).
[26] RAJAGOPALAN R G, FANUCCI J B. Finite difference model for vertical axis wind turbines[J]. Journal of Propulsion and Power, 1985, 1(6):432-436.
[27] ZORI L A J, RAJAGOPALAN R G. Navier-Stokes calculations of rotor-airframe interaction in forward flight[J]. Journal of the American Helicopter Society, 1995, 40(2):57-67.
[28] CHAFFIN M S, BERRY J D. Navier-Stokes simulation of a rotor using a distributed pressure disk method[C]//Proceedings of 51st Annual Forum of American Helicopter Society, 1995.
[29] O'BRIEN D, SMITH M. Analysis of rotor-fuselage interactions using various rotor models:AIAA-2005-0468[R]. Reston:AIAA, 2005.
文章导航

/