论文

垂直起降运载火箭返回轨迹不确定性优化

  • 赵剑 ,
  • 黄悦琛 ,
  • 李海阳 ,
  • 何湘粤
展开
  • 1. 国防科技大学 空天科学学院, 长沙 410073;
    2. 华阴兵器试验中心, 华阴 714200

收稿日期: 2020-09-30

  修回日期: 2020-11-16

  网络出版日期: 2021-01-21

基金资助

国家自然科学基金(11372345);湖南省自然科学基金(2020JJ4657)

Uncertainty optimization for return trajectory of vertical takeoff and vertical landing launch vehicle

  • ZHAO Jian ,
  • HUANG Yuechen ,
  • LI Haiyang ,
  • HE Xiangyue
Expand
  • 1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;
    2. Ordnance Test Center, Huayin 714200, China

Received date: 2020-09-30

  Revised date: 2020-11-16

  Online published: 2021-01-21

Supported by

National Natural Science Foundation of China (11372345);Natural Science Foundation of Hunan Province of China (2020JJ4657)

摘要

针对垂直起降运载火箭一子级在返回着陆的过程中存在的参数不确定性,提出了一种基于非侵入式多项式混沌展开的序列优化和可靠度评估的返回轨迹不确定性优化方法。首先,建立了返回多飞行段轨迹在确定性条件下的优化模型。然后,为同时兼顾轨迹的鲁棒性和可靠性,建立了由鲁棒最优目标函数、基于可靠度的路径约束和鲁棒等式约束组成的不确定性返回轨迹优化模型。最后,基于非侵入式多项式混沌展开方法对鲁棒目标函数和等式约束进行量化处理,将原随机鲁棒优化问题转化为高维状态空间中的等价确定性优化问题;为提高路径约束的可靠度评估效率,基于非侵入式多项式混沌展开方法对最可能点法进行改进,进一步发展了序列优化和可靠度评估策略。数值仿真结果表明,所提出的不确定性优化方法具有较好的鲁棒性,可以满足工程可靠性指标要求,同时还具有较高的精度和计算效率。

本文引用格式

赵剑 , 黄悦琛 , 李海阳 , 何湘粤 . 垂直起降运载火箭返回轨迹不确定性优化[J]. 航空学报, 2021 , 42(11) : 524829 -524829 . DOI: 10.7527/S1000-6893.2020.24829

Abstract

Considering the parametric uncertainties during the landing process of the vertical takeoff and vertical landing launch vehicle, an uncertainty optimization method of sequential optimization and reliability assessment based on nonintrusive polynomial chaos expansion for return trajectory is proposed. First, an optimization model of the return multi-flight-phase trajectory under the nominal conditions is established. Then, considering both robustness and reliability of the trajectory, an optimization model for the return trajectory under uncertainties is established, which consists of the robust optimization objective function, reliability-based path constraints and robust equality constraints. Finally, the robust optimization objective function and robust equality constraints are quantified based on the nonintrusive polynomial chaos expansion method, by which the original stochastic robust optimization problem is transformed into the equivalent deterministic optimization problem in the high dimensional state space. Meanwhile, to improve the evaluation efficiency of path constraints, the most probable point method is improved by using nonintrusive polynomial chaos expansion, and the sequence optimization and reliability assessment strategy are further developed. Numerical results show that the proposed method has good robustness and can meet the requirements of reliability in engineering, and also has high accuracy and efficiency.

参考文献

[1] ZHANG L, WEI C Z, WU R, et al. Fixed-time extended state observer based non-singular fast terminal sliding mode control for a VTVL reusable launch vehicle[J]. Aerospace Science and Technology, 2018, 82-83:70-79.
[2] ZHANG L, WEI C Z, WU R, et al. Adaptive fault-tolerant control for a VTVL reusable launch vehicle[J]. Acta Astronautica, 2019, 159:362-370.
[3] LIU X F. Fuel-optimal rocket landing with aerodynamic controls[J]. Journal of Guidance, Control, and Dynamics, 2018, 42(1):65-77.
[4] RAGAB M, CHEATWOOD F M. Launch vehicle recovery and reuse[C]//AIAA SPACE 2015 Conference and Exposition. Reston:AIAA, 2015.
[5] OUNG R, D'ANDREA R. The distributed flight array:Design, implementation, and analysis of a modular vertical take-off and landing vehicle[J]. The International Journal of Robotics Research, 2014, 33(3):375-400.
[6] ZHAO J, LI H Y, HE X Y, et al. Uncertainty analysis for return trajectory of vertical takeoff and vertical landing reusable launch vehicle[J]. Mathematical Problems in Engineering, 2020, 2020:1-18.
[7] WANG J B, CUI N G, WEI C Z. Optimal rocket landing guidance using convex optimization and model predictive control[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(5):1078-1092.
[8] SIMPLÍCIO P, MARCOS A, BENNANI S. Reusable launchers:development of a coupled flight mechanics, guidance, and control benchmark[J]. Journal of Spacecraft and Rockets, 2019, 57(1):74-89.
[9] LI S, JIANG X Q. Review and prospect of guidance and control for Mars atmospheric entry[J]. Progress in Aerospace Sciences, 2014, 69:40-57.
[10] MA L, WANG K X, SHAO Z J, et al. Direct trajectory optimization framework for vertical takeoff and vertical landing reusable rockets:case study of two-stage rockets[J]. Engineering Optimization, 2019, 51(4):627-645.
[11] MA L, WANG K X, XU Z H, et al. Trajectory optimization for powered descent and landing of reusable rockets with restartable engines[C]//69th International Astronautical Congress, 2018.
[12] WANG C, SONG Z Y. Trajectory optimization for reusable rocket landing[C]//2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC). Piscataway:IEEE Press, 2018:1-6.
[13] 高朝辉, 张普卓, 刘宇, 等. 垂直返回重复使用运载火箭技术分析[J]. 宇航学报, 2016, 37(2):145-152. GAO Z H, ZHANG P Z, LIU Y, et al. Analysis of vertical landing technique in reusable launch vehicle[J]. Journal of Astronautics, 2016, 37(2):145-152(in Chinese).
[14] YAO W, CHEN X Q, LUO W C, et al. Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles[J]. Progress in Aerospace Sciences, 2011, 47(6):450-479.
[15] DU X P, CHEN W. Sequential optimization and reliability assessment method for efficient probabilistic design[J]. Journal of Mechanical Design, 2004, 126(2):225-233.
[16] CHANDU S V L, GRANDHI R V. General purpose procedure for reliability based structural optimization under parametric uncertainties[J]. Advances in Engineering Software, 1995, 23(1):7-14.
[17] MíNGUEZ R, CASTILLO E. Reliability-based optimization in engineering using decomposition techniques and FORMS[J]. Structural Safety, 2009, 31(3):214-223.
[18] WANG F G, YANG S X, XIONG F F, et al. Robust trajectory optimization using polynomial chaos and convex optimization[J]. Aerospace Science and Technology, 2019, 92:314-325.
[19] 罗佳奇, 陈泽帅, 曾先. 考虑几何设计参数不确定性影响的涡轮叶栅稳健性气动设计优化[J]. 航空学报, 2020, 41(10):123826. LUO J Q, CHEN Z S, ZENG X. Robust aerodynamic design optimization of turbine cascades considering uncertainty of geometric design parameters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10):123826(in Chinese).
[20] JIANG X Q. Robust optimization of Mars entry trajectory under uncertainty[C]//2018 Space Flight Mechanics Meeting. Reston:AIAA, 2018.
[21] JIANG X Q, LI S. Mars entry trajectory planning using robust optimization and uncertainty quantification[J]. Acta Astronautica, 2019, 161:249-261.
[22] YADAV O P, BHAMARE S S, RATHORE A. Reliability-based robust design optimization:A multi-objective framework using hybrid quality loss function[J]. Quality and Reliability Engineering International, 2010, 26(1):27-41.
[23] LIM J, JANG Y S, CHANG H S, et al. Role of multi-response principal component analysis in reliability-based robust design optimization:An application to commercial vehicle design[J]. Structural and Multidisciplinary Optimization, 2018, 58(2):785-796.
[24] BOHLOURI V, JALALI-NAINI S H. Application of reliability-based robust optimization in spacecraft attitude control with PWPF modulator under uncertainties[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(10):1-15.
[25] SIMPLÍCIO P, MARCOS A, BENNANI S. Reusable launchers:development of a coupled flight mechanics, guidance, and control benchmark[J]. Journal of Spacecraft and Rockets, 2019, 57(1):74-89.
[26] STAPPERT S, WILKEN J, SIPPEL M. Evaluation of European reusable VTVL booster stages[C]//2018 AIAA SPACE and Astronautics Forum and Exposition. Reston:AIAA, 2018.
[27] RANGAVAJHALA S, MESSAC A. Designer's preferences regarding equality constraints in robust design optimization[J]. Structural and Multidisciplinary Optimization, 2010, 41(1):17-38.
[28] XIU D B, KARNIADAKIS G E. The Wiener:Askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2):619-644.
[29] DU X P, CHEN W. A most probable point based method for uncertainty analysis[C]//Proceedings of ASME 2000 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2020:429-438.
[30] REN Y, SHAN J J. Reliability-based soft landing trajectory optimization near asteroid with uncertain gravitational field[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(9):1810-1820.
[31] HUANG Y C, LI H Y. Reliability-based trajectory optimization using nonintrusive polynomial chaos for Mars entry mission[J]. Advances in Space Research, 2018, 61(11):2854-2869.
文章导航

/