流体力学与飞行力学

基于投影法的双后掠乘波体气动性能

  • 李珺 ,
  • 易怀喜 ,
  • 王逗 ,
  • 罗世彬
展开
  • 中南大学 航空航天学院, 长沙 410083

收稿日期: 2020-09-03

  修回日期: 2020-11-08

  网络出版日期: 2021-01-21

基金资助

湖南省自然科学基金(2019 JJ50773)

Aerodynamic performance of double swept waverider based on projection method

  • LI Jun ,
  • YI Huaixi ,
  • WANG Dou ,
  • LUO Shibin
Expand
  • School of Aeronautics and Astronautics, Central South University, Changsha 410083, China

Received date: 2020-09-03

  Revised date: 2020-11-08

  Online published: 2021-01-21

Supported by

Natural Science Foundation of Hunan Province (2019 JJ50773)

摘要

双后掠布局能有效改善乘波体低速时的气动性能不足。为了获得双后掠乘波体,目前常采用的是定前缘型线的吻切锥乘波体设计方法,但该设计方法存在设计过程复杂,激波出口型线与理论不一致等问题。而采用直接投影获得双后掠乘波体的设计方法可以解决上述问题。为了系统研究基于投影法的双后掠乘波体的气动性能,使用CFD方法分析了采用该方法生成的双后掠乘波体在高超声速与低速时的气动性能。结果表明,该方法获得的乘波体在高超声速下的气动性能与定前缘型线的双后掠乘波体相当。且此方法仍保留了高超声速下"波效应"引起大攻角非线性升力、低速下"涡效应"有效提高升阻比等双后掠乘波体的优良气动特征,为基于投影法的双后掠乘波体的工程应用提供了指导。

本文引用格式

李珺 , 易怀喜 , 王逗 , 罗世彬 . 基于投影法的双后掠乘波体气动性能[J]. 航空学报, 2021 , 42(12) : 124703 -124703 . DOI: 10.7527/S1000-6893.2021.24703

Abstract

The double sweepback layout can effectively improve the aerodynamic performance of the waverider in the subsonic state. At present, the double swept waverider is mainly designed by the osculating-cones method with leading edge-customized. However, there are still some problems in this method, such as complexity of the design process and inconsistency between the actual and the theoretical inlet capture curve. Given that, we take the projection method to design the double swept waverider directly. To systematically research the aerodynamic performance of the double swept waverider obtained by the projection method at the subsonic and hypersonic speeds, the CFD method is applied. Results show that the aerodynamic performance of the double swept waverider designed by the projection method is equivalent to that designed with the leading edge-customized method in the hypersonic state. Moreover, the double swept waverider obtained by the projection method still retains the excellent aerodynamic characteristics of the double-swept waverider, such as the "wave effect" at hypersonic speeds, which causes nonlinear lift at large angles of attack, and the "vortex effect" at low speeds which effectively improves the lift-drag ratio. The results in this paper can provide some guidance for the engineering application of the double swept waverider based on the projection method.

参考文献

[1] NONWEILER T R F. Aerodynamic problems of manned space vehicles[J]. The Journal of the Royal Aeronautical Society, 1959, 63(585):521-528.
[2] JONES J G, MOORE K C, PIKE J, et al. A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow fields[J]. Ingenieur-Archiv, 1968, 37(1):56-72.
[3] TAKASHIMA N, LEWIS M. Waverider configurations based on non-axisymmetric flow fields for engine-airframe integration[C]//32nd Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1994.
[4] SOBIECZKY H, DOUGHERTY F C, JONES K. Hypersonic waverider design from given shock waves[C]//First International Waverider Symposium. Maryland:University of Maryland, 1990:1-19.
[5] SOBIECZKY H, ZORES B, WANG Z, et al. High speed flow design using the theory of osculating cones and ax-isymmetric flows[J]. Chinese Journal of Aeronautics, 1999, 12(1):3-10.
[6] RODI P. The osculating flowfield method of waverider geometry generation[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005.
[7] 丁峰. 高超声速滑翔-巡航两级乘波设计方法研究[D]. 长沙:国防科学技术大学, 2012. DING F. Design study of hypersonic slide-cruise two-stage waverider[D]. Changsha:National University of Defense Technology, 2012(in Chinese).
[8] 王庆文. 基于吻切理论的两级乘波体设计[D]. 长沙:国防科学技术大学, 2015. WANG Q W. The osculating method of the dual waverider geometry generation[D]. Changsha:National University of Defense Technology, 2015(in Chinese).
[9] 刘珍. 吻切流场乘波气动设计理论和方法研究[D]. 长沙:国防科技大学, 2018. LIU Z. Research on novel aerodynamic design theory and methodology for osculating flowfield waverider[D]. Changsha:National University of Defense Technology, 2018(in Chinese).
[10] 王发民, 丁海河, 雷麦芳. 乘波布局飞行器宽速域气动特性与研究[J]. 中国科学(E辑:技术科学), 2009, 39(11):1828-1835. WANG F M, DING H H, LEI M F. Aerodynamic characteristics research on wide-speed range waverider configuration[J]. Science in China (Series E:Technological Sciences), 2009, 39(11):1828-1835(in Chinese).
[11] 李世斌, 罗世彬, 黄伟, 等. 新型宽速域高超声速飞行器气动特性研究[J]. 固体火箭技术, 2012, 35(5):588-592. LI S B, LUO S B, HUANG W, et al. Investigation on aerodynamic performance for a novel wide-ranged hypersonic vehicle[J]. Journal of Solid Rocket Technology, 2012, 35(5):588-592(in Chinese).
[12] LI S B, LUO S B, HUANG W, et al. Influence of the connection section on the aerodynamic performance of the tandem waverider in a wide-speed range[J]. Aerospace Science and Technology, 2013, 30(1):50-65.
[13] LI S B, HUANG W, WANG Z G, et al. Design and aerodynamic investigation of a parallel vehicle on a wide-speed range[J]. Science China Information Sciences, 2014, 57(12):1-10.
[14] 刘传振, 白鹏, 陈冰雁. 双后掠乘波体设计及性能优势分析[J]. 航空学报, 2017, 38(6):120808. LIU C Z, BAI P, CHEN B Y. Design and property advantages analysis of double swept waverider[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):120808(in Chinese).
[15] WANG J F, LIU C Z, BAI P, et al. Design methodology of the waverider with a controllable planar shape[J]. Acta Astronautica, 2018, 151:504-510.
[16] LIU C Z, BAI P, YANG Y J, et al. Double swept waverider from osculating-cone method[J]. Journal of Aerospace Engineering, 2018, 31(6):06018004.
[17] RODI P. Geometrical relationships for osculating cones and osculating flowfield waveriders[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011.
[18] RODI P. Vortex lift waverider configurations[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2012.
[19] 段焰辉, 范召林, 吴文华. 定后掠角密切锥乘波体的生成和设计方法[J]. 航空学报, 2016, 37(10):3023-3034. DUAN Y H, FAN Z L, WU W H. Generation and design methods of osculating cone waverider with constant angle of sweepback[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3023-3034(in Chinese).
[20] 宋赋强, 阎超, 马宝峰. 一种宽速域乘波体的设计及气动特性研究[J]. 气体物理, 2017, 2(5):25-36. SONG F Q, YAN C, MA B F. Design and aerodynamic analysis of a wide speed waverider[J]. Physics of Gases, 2017, 2(5):25-36(in Chinese).
[21] 刘传振, 白鹏, 陈冰雁, 等. 定平面形状乘波体及设计变量影响分析[J]. 宇航学报, 2017, 38(5):451-458. LIU C Z, BAI P, CHEN B Y, et al. Analysis on design variables for planform-controllable waverider[J]. Journal of Astronautics, 2017, 38(5):451-458(in Chinese).
[22] 刘谋佶. 边条翼及分离涡研究[J]. 北京航空学院学报, 1987, 13(4):1-10. LIU M J. Studies on strake-wing aerodynamics and separated vortex[J]. Journal of Beijing Institute of Aeronautics and Astronautics, 1987, 13(4):1-10(in Chinese).
[23] 刘传振, 刘强, 白鹏, 等. 涡波效应宽速域气动外形设计[J]. 航空学报, 2018, 39(7):121824. LIU C Z, LIU Q, BAI P, et al. Aerodynamic shape design integrating vortex and shock effects for width-velocity-range[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7):121824(in Chinese).
[24] LIU C Z, LIU Q, BAI P, et al. Planform-customized waverider design integrating with vortex effect[J]. Aerospace Science and Technology, 2019, 86:438-443.
[25] 刘传振, 田俊武, 白鹏, 等. 双后掠乘波体的非线性升力增长[J]. 航空学报, 2019, 40(10):122864. LIU C Z, TIAN J W, BAI P, et al. Nonlinear lift increase of double swept waverider[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):122864(in Chinese).
[26] LIU C Z, BAI P, TIAN J W, et al. Nonlinearity analysis of increase in lift of double swept waverider[J]. AIAA Journal, 2020, 58(1):304-314.
[27] LIOU M S, STEFFEN C J Jr. A new flux splitting scheme[J]. Journal of Computational Physics, 1993, 107(1):23-39.
[28] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[29] SCLAFANI A, DEHAAN M, VASSBERG J. OVERFLOW drag prediction for the DLR-F6 transport configuration:a DPW-II case study[C]//42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2004.
[30] 李素循. 典型外形高超声速流动特性[M]. 北京:国防工业出版社, 2008. LI S X. Hypersonic flow characteristics of typical configura-tions[M]. Beijing:National Defense Industry Press, 2008(in Chinese).
文章导航

/