论文

钎焊温度对C/C/AgCuTi+Cf/TC4接头组织及力学性能的影响

  • 赵可汗 ,
  • 刘多 ,
  • 朱海涛 ,
  • 陈斌 ,
  • 胡胜鹏 ,
  • 宋晓国
展开
  • 1. 哈尔滨工业大学 先进焊接与连接国家重点实验室, 哈尔滨 150001;
    2. 哈尔滨工业大学(威海)山东省特种焊接技术重点实验室, 威海 264200

收稿日期: 2020-11-25

  修回日期: 2020-12-24

  网络出版日期: 2021-01-14

基金资助

国家自然科学基金(51875130,51775138);山东省自然科学基金(ZR2019MEE091)

Effect of brazing temperature on microstructure and mechanical property of C/C/AgCuTi+Cf/TC4 joint

  • ZHAO Kehan ,
  • LIU Duo ,
  • ZHU Haitao ,
  • CHEN Bin ,
  • HU Shengpeng ,
  • SONG Xiaoguo
Expand
  • 1. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China;
    2. Shandong Provincial Key Lab of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264200, China

Received date: 2020-11-25

  Revised date: 2020-12-24

  Online published: 2021-01-14

Supported by

National Natural Science Foundation of China (51875130, 51775138);Natural Science Foundation of Shandong Province (ZR2019MEE091)

摘要

为了缓解C/C复合材料与TC4合金钎焊接头的残余应力,采用AgCuTi+0.3% Cf钎料实现了二者的连接。使用扫描电子显微镜、透射电子显微镜确定了界面微观组织结构,利用万能试验机表征接头的力学性能,对不同钎焊温度下的接头界面组织及力学性能进行了分析,并归纳了钎焊接头形成过程,阐明了碳纤维在接头形成过程中的作用机理。结果表明:随着钎焊温度的升高,由于Ti活度以及元素扩散速率的增加,接头两侧的反应层厚度增加,钎缝中心的Ti-Cu化合物增加,相应的钎焊接头抗剪强度先增加后减小,在钎焊温度900℃,钎焊时间10 min时获得最大接头强度28.5 MPa。C/C/AgCuTi+Cf/TC4接头形成可以分为钎料熔化,TC4开始溶解;元素富集,反应层形成;等温析出,液相推移;接头形成4个阶段。碳纤维在接头形成中起到组织调控与应力调控作用,这使钎焊接头质量得到提升。

本文引用格式

赵可汗 , 刘多 , 朱海涛 , 陈斌 , 胡胜鹏 , 宋晓国 . 钎焊温度对C/C/AgCuTi+Cf/TC4接头组织及力学性能的影响[J]. 航空学报, 2022 , 43(4) : 525007 -525007 . DOI: 10.7527/S1000-6893.2021.25007

Abstract

C/C composite and TC4 alloy were brazed successfully by using AgCuTi+0.3%Cf filler. The interfacial microstructure was investigated by the SEM, EDS and TEM. The mechanical property of the joints was characterized by the universal testing machine. The microstructure and mechanical property of the joints brazed at different temperatures were analyzed. The process of joint formation was analyzed, and the role of carbon fiber in each stage of joint formation was revealed. Results show that with the increase of the brazing temperature, Ti activity and element diffusion rate increased, so that the thickness of reaction layers on both sides of joints and Ti-Cu compounds in the center of brazing seam increased. The shear strength of joints first increased and then decreased with the increase of brazing temperature, and the maximum strength of 28.5 MPa was obtained when the brazing temperature was 900℃ and the holding time was 10 min. The formation process of C/C/AgCuTi+Cf/TC4 joints could be divided into four stages:melting of filler, and dissolving of TC4 alloy; element enrichment, and formation of reaction layer; isothermal precipitation, and movement of liquid phase; joint formation. Carbon fiber played an important role in the formation of the joint, which regulated the microstructure and residual stress of the brazed joint and improved the mechanical property of brazed joint.

参考文献

[1] WINDHORST T, BLOUNT G. Carbon-carbon composites:A summary of recent developments and applications[J]. Materials & Design, 1997, 18(1):11-15.
[2] DHAKATE R S, AOKI T, OGASAWARA T. High temperature tensile properties of 2D cross-ply carbon-carbon composites[J]. Advanced Materials Letters, 2011, 2(2):106-112.
[3] 李湘郡, 李彦斌, 郭飞, 等. C/C复合材料的压缩强度分布与可靠性评估[J]. 航空学报, 2019, 40(8):222853. LI X J, LI Y B, GUO F, et al. Compression strength distribution and reliability assessment of C/C composites[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):222853(in Chinese).
[4] 程晖, 樊新田, 徐冠华, 等. 航空复合材料结构精密干涉连接技术综述[J]. 航空学报, 2021, 42(10):524876. CHENG H, FAN X T, XU G H, et al. State of the art of precise interference-fit technology for composite structures in aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10):524876(in Chinese).
[5] MOUTIS N V, JIMENEZ C, AZPIROZ X, et al. Brazing of carbon-carbon composites to Nimonic alloys[J]. Journal of Materials Science, 2010, 45(1):74-81.
[6] SINGH M, ASTHANA R, SHPARGEL T P. Brazing of carbon-carbon composites to Cu-clad molybdenum for thermal management applications[J]. Materials Science and Engineering:A, 2007, 452-453:699-704.
[7] SINGH M, ASTHANA R. Characterization of brazed joints of CC composite to Cu-clad-Molybdenum[J]. Composites Science and Technology, 2008, 68(14):3010-3019.
[8] WANG Y L, WANG W L, HUANG J H, et al. Reactive composite brazing of C/C composite and GH3044 with Ag-Ti mixed powder filler material[J]. Materials Science and Engineering:A, 2019, 759:303-312.
[9] 丁文锋, 奚欣欣, 占京华, 等. 航空发动机钛材料磨削技术研究现状及展望[J]. 航空学报, 2019, 40(6):022763. DING W F, XI X X, ZHAN J H, et al. Research status and future development of grinding technology of titanium materials for aero-engines[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):022763(in Chinese).
[10] ZHOU Y G, ZENG W D, YU H Q. An investigation of a new near-Beta forging process for titanium alloys and its application in aviation components[J]. Materials Science and Engineering:A, 2005, 393(1-2):204-212.
[11] LIU J, LU J, WANG X, et al. Corrosion fatigue performance of TC4 plates with holes in aviation kerosene[J]. Aerospace Science and Technology, 2015, 47:420-424.
[12] 周显光, 张福勤, 于奇, 等. Ag-Cu-Ti钎料连接C/C复合材料与钛合金的界面显微组织分析[J]. 材料研究与应用, 2013, 7(2):67-71. ZHOU X G, ZHANG F Q, YU Q, et al. Microstructure analyses on joint of carbon/carbon composites and titanium alloy using Ag-Cu-Ti as brazing metal[J]. Materials Research and Application, 2013, 7(2):67-71(in Chinese).
[13] SHEN Y X, LI Z L, HAO C Y, et al. A novel approach to brazing C/C composite to Ni-based superalloy using alumina interlayer[J]. Journal of the European Ceramic Society, 2012, 32(8):1769-1774.
[14] WANG H Q, CAO J, FENG J C. Brazing mechanism and infiltration strengthening of CC composites to TiAl alloys joint[J]. Scripta Materialia, 2010, 63(8):859-862.
[15] SHEN Y X, LI Z L, HAO C Y, et al. Joining C/C composite to copper using active Cu-3.5Si braze[J]. Journal of Nuclear Materials, 2012, 421(1-3):28-31.
[16] HAO Z T, WANG D P, YANG Z W, et al. Microstructure and mechanical properties of Ti2AlNb alloy and C/C composite joints brazed with Ag-Cu-Zn and Ag-Cu-Zn/Cu/Ag-Cu-Ti filler metals[J]. Archives of Civil and Mechanical Engineering, 2019, 19(4):1083-1094.
[17] 王泽宇, 霸金, 马蔷, 等. 纳米材料增强复合钎料的研究进展[J]. 精密成形工程, 2018, 10(1):82-90. WANG Z Y, BA J, MA Q, et al. Research progress on nanomaterial reinforced composite brazing filler[J]. Journal of Netshape Forming Engineering, 2018, 10(1):82-90(in Chinese).
[18] CUI B, HUANG J H, CAI C, et al. Microstructures and mechanical properties of Cf/SiC composite and TC4 alloy joints brazed with (Ti-Zr-Cu-Ni)+W composite filler materials[J]. Composites Science and Technology, 2014, 97:19-26.
[19] 刘多, 李星仪, 赵可汗, 等. CNTs对TC4与C/C复合材料钎焊接头组织及力学性能的影响[J]. 焊接学报, 2020, 41(4):1-5, 97. LIU D, LI X Y, ZHAO K H, et al. Effect of CNTs on microstructure and mechanical properties of TC4 and C/C composites brazed joint[J]. Transactions of the China Welding Institution, 2020, 41(4):1-5, 97(in Chinese).
[20] WANG H, NING F D, HU Y B, et al. Edge trimming of carbon fiber-reinforced plastic composites using rotary ultrasonic machining:Effects of tool orientations[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(5-8):1641-1653.
[21] JIA Y, LI K Z, XUE L Z, et al. Mechanical and electromagnetic shielding performance of carbon fiber reinforced multilayered (PyC-SiC)n matrix composites[J]. Carbon, 2017, 111:299-308.
[22] LIU D, ZHAO K H, SONG Y Y, et al. Effect of introducing carbon fiber into AgCuTi filler on interfacial microstructure and mechanical property of C/C-TC4 brazed joints[J]. Materials Characterization, 2019, 157:109890.
[23] CASTOLDI L, VISALLI G, MORIN S, et al. Copper-titanium thin film interaction[J]. Microelectronic Engineering, 2004, 76(1-4):153-159.
[24] ELREFAEY A, TILLMANN W. Effect of brazing parameters on microstructure and mechanical properties of titanium joints[J]. Journal of Materials Processing Technology, 2009, 209(10):4842-4849.
[25] GAMBARO S, VALENZA F, PASSERONE A, et al. Brazing transparent YAG to Ti6Al4V:Reactivity and characterization[J]. Journal of the European Ceramic Society, 2016, 36(16):4185-4196.
[26] KOZLOVA O, BRACCINI M, VOYTOVYCH R, et al. Brazing copper to alumina using reactive CuAgTi alloys[J]. Acta Materialia, 2010, 58(4):1252-1260.
[27] TAKEUCHI A, INOUE A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005, 46(12):2817-2829.
[28] LU L, FUH J Y H, CHEN Z D, et al. In situ formation of TiC composite using selective laser melting[J]. Materials Research Bulletin, 2000, 35(9):1555-1561.
[29] LEE H K, LEE J Y. Decomposition and interfacial reaction in brazing of SiC by copper-based active alloys[J]. Journal of Materials Science Letters, 1992, 11(9):550-553.
[30] LIN Q L, SHEN P, YANG L L, et al. Wetting of TiC by molten Al at 1123-1323 K[J]. Acta Materialia, 2011, 59(5):1898-1911.
[31] DAHAN I, ADMON U, FRAGE N, et al. Diffusion in Ti/TiC multilayer coatings[J]. Thin Solid Films, 2000, 377-378:687-693.
[32] FRAGE N, FROUMIN N, DARIEL M P. Wetting of TiC by non-reactive liquid metals[J]. Acta Materialia, 2002, 50(2):237-245.
[33] 代翔宇. ZrO2陶瓷与Ti合金钎焊工艺及机理研究[D]. 哈尔滨:哈尔滨工业大学, 2017:36-41. DAI X Y. Research on brazing process and mechanism of ZrO2 ceramic to Ti alloys[D]. Harbin:Harbin Institute of Technology, 2017:36-41(in Chinese).
[34] ZHANG S Y, YUAN Y, SU Y Y, et al. Interfacial microstructure and mechanical properties of brazing carbon/carbon composites to stainless steel using diamond particles reinforced Ag-Cu-Ti brazing alloy[J]. Journal of Alloys and Compounds, 2017, 719:108-115.
[35] HE Y M, ZHANG J, PAN F, et al. Uncovering the critical factor in determining the residual stresses level in Si3N4-GM filler alloy-42CrMo joints by FEM analysis and experiments[J]. Ceramics International, 2013, 39(1):709-718.
[36] 吴铭方, 于治水, 蒋成禹, 等. 反应层厚度对Al2O3/AgCuTi/Ti-6Al-4V接头强度的影响[J]. 稀有金属材料与工程, 2000, 29(6):419-422. WU M F, YU Z S, JIANG C Y, et al. Effect of reaction layer thickness on the strength of Al2O3/AgCuTi/Ti-6Al-4V joints[J]. Rare Metal Materials and Engineering, 2000, 29(6):419-422(in Chinese).
[37] 吴昌忠,陈静,陈怀宁,等. 钎料对金属/陶瓷钎焊接头残余应力的影响[J]. 机械工程材料. 2005, 29(9):18-20. WU C Z, CHEN J, CHEN H N, et al. The influence of brazing metal on residual stresses in brazed joints of ceramic-metal[J]. Materials for Mechanical Engineering. 2005, 29(9):18-20(in Chinese).
[38] SUN Z, ZHANG L X, HAO T D, et al. Brazing of SiO2f/SiO2 composite to Invar using a graphene-modified Cu-23Ti braze filler[J]. Ceramics International, 2018, 44(13):15809-15816.
[39] ZHANG L X, SUN Z, CHANG Q, et al. Brazing SiO2f/SiO2 composite to Invar alloy using a novel TiO2 particle-modified composite braze filler[J]. Ceramics International, 2019, 45(2):1698-1709.
[40] HOSSEINI M, MANESH H D. Bond strength optimization of Ti/Cu/Ti clad composites produced by roll-bonding[J]. Materials & Design, 2015, 81:122-132.
[41] WANG Z Y, WANG G, LI M N, et al. Three-dimensional graphene-reinforced Cu foam interlayer for brazing C/C composites and Nb[J]. Carbon, 2017, 118:723-730.
[42] JIN C K, WANG Y, YANG Z W, et al. C/C composite surface modified by electrophoretic depositing SiC nanowires and its brazing to Nb[J]. Ceramics International, 2020, 46(1):204-211.
[43] BRAMFITT B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J]. Metallurgical Transactions, 1970, 1(7):1987-1995.
[44] 董闯, 羌建兵, 袁亮, 等. 合金相的"团簇+连接原子"模型与成分设计[J]. 中国有色金属学报, 2011, 21(10):2502-2510. DONG C, QIANG J B, YUAN L, et al. A cluster-plus-glue-atom model for composition design of complex alloys[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10):2502-2510(in Chinese).
[45] ZHANG L X, ZHANG B, SUN Z, et al. Preparation of the graphene nanosheets reinforced AgCuTi based composite for brazing graphite and Cu[J]. Journal of Alloys and Compounds, 2019, 782:981-985.
[46] SONG Y Y, LIU D, HU S P, et al. Graphene nanoplatelets reinforced AgCuTi composite filler for brazing SiC ceramic[J]. Journal of the European Ceramic Society, 2019, 39(4):696-704.
[47] STEFANESCU D M, JURETZKO F R, CATALINA A, et al. Particle engulfment and pushing by solidifying interfaces:Part Ⅱ. Microgravity experiments and theoretical analysis[J]. Metallurgical and Materials Transactions A, 1998, 29(6):1697-1706.
[48] DEZELLUS O, ARROYAVE R, FRIES S G. Thermodynamic modelling of the Ag-Cu-Ti ternary system[J]. International Journal of Materials Research, 2011, 102(3):286-297.
文章导航

/