流体力学与飞行力学

篦齿容积效应对盘腔空气系统瞬态特性的影响

  • 王磊 ,
  • 毛军逵 ,
  • 王龙飞 ,
  • 潘进 ,
  • 邱长波 ,
  • 叶大海 ,
  • 蔡可信
展开
  • 1. 南京航空航天大学 能源与动力学院, 南京 210016;
    2. 江苏省航空动力系统重点实验室, 南京 210016;
    3. 中国航发湖南动力机械研究所, 株洲 412002

收稿日期: 2020-11-26

  修回日期: 2020-12-21

  网络出版日期: 2021-01-14

基金资助

国家科技重大专项(2017-Ⅲ-0010-0036);工信部专项科研项目(MJ-2018-D-21);中国博士后科学基金(2020TQ0147)

Influence of labyrinth seal volume packing effect on transient characteristics of disc cavity air system

  • WANG Lei ,
  • MAO Junkui ,
  • WANG Longfei ,
  • PAN Jin ,
  • QIU Changbo ,
  • YE Dahai ,
  • CAI Kexin
Expand
  • 1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing 210016, China;
    3. AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 412002, China

Received date: 2020-11-26

  Revised date: 2020-12-21

  Online published: 2021-01-14

Supported by

National Science and Technology Major Project (2017-Ⅲ-0010-0036); Specialized Research Project of Ministry of Industry and Information Technology of China (MJ-2018-D-21); China Postdoctoral Science Foundation (2020TQ0147)

摘要

针对航空发动机中空气系统的瞬态响应问题,以多级封严盘腔为研究对象,开展了考虑篦齿容积效应下的空气系统瞬态计算分析研究。在研究中,采用一维瞬态流体网络计算方法,重点分析了封严篦齿和旋转盘腔的容积效应,并建立了相应的一维瞬态数学模型,通过迭代求解瞬态网络守恒方程组,得到了不同边界工况下盘腔内流体参数随时间响应规律。研究结果表明,由于元件之间的相互作用,上游篦齿元件的容积效应会使得流路下游盘腔内流体参数的响应时间增大,并使温度超调提升。与极端工况相比,过渡工况下腔内平均温度的响应对篦齿容积效应更为敏感,当扰动幅值为1.3时,考虑篦齿容积效应后腔内平均温度响应时间增大10.6%,且温度超调值提升213.7%。

本文引用格式

王磊 , 毛军逵 , 王龙飞 , 潘进 , 邱长波 , 叶大海 , 蔡可信 . 篦齿容积效应对盘腔空气系统瞬态特性的影响[J]. 航空学报, 2022 , 43(2) : 124989 -124989 . DOI: 10.7527/S1000-6893.2021.24989

Abstract

To investigate the transient response of the air system in aero-engine, transient calculation analysis of the air system is carried out considering the volume packing effect of labyrinth seals in a multi-stage sealed disk cavity in this paper. In the research, a one-dimensional transient fluid network calculation method is adopted to explore the volume packing effect of labyrinth seals and the rotating disk cavity, and a corresponding one-dimensional transient mathematical model is established. By iteratively solving the transient network conservation equations, the fluid parameters of air system in the disk cavity responding with time under different boundary conditions are obtained. The results show that due to the interaction between elements, the volume packing effect of the upstream labyrinth seal will increase the fluid parameters response time and promote the temperature overshoot of disk cavity in the flow path downstream. Compared with extreme conditions, the cavity temperature response under transition conditions is more sensitive to the volume packing effect of labyrinth seal. When the disturbance amplitude is 1.3, the temperature response time in the disk cavity increases by 10.6% and the temperature overshoot value increases by 213.7% after considering the volume packing effect of labyrinth seals.

参考文献

[1] MOORE A. Gas turbine engine internal air systems:A review of the requirements and the problems[C]//Proceedings of ASME 1975 Winter Annual Meeting. New York:ASME, 2015.
[2] KUTZ K J, SPEER T M. Simulation of the secondary air system of aero engines[J].Journal of Turbomachinery, 1994, 116(2):306-315.
[3] MULLER Y. Secondary air system model for integrated thermomechanical analysis of a jet engine[C]//Proceedings of ASME Turbo Expo 2008:Power for Land, Sea, and Air. New York:ASME, 2009:1359-1374.
[4] ALEXIOU A, MATHIOUDAKIS K. Secondary air system component modeling for engine performance simulations[J].Journal of Engineering for Gas Turbines and Power, 2009, 131(3):031202.
[5] REY VILLAZÓN J M, WILDOW T, BENTON R, et al. Impact of the secondary air system design parameters on the calculation of turbine discs windage[C]//Proceedings of ASME Turbo Expo 2014:Turbine Technical Conference and Exposition. New York:ASME, 2014.
[6] GANINE V, HILLS N, MILLER M, et al. Implicit heterogeneous 1D/2D coupling for aero-thermo-mechanical simulation of secondary air systems[C]//Proceedings of ASME Turbo Expo 2015:Turbine Technical Conference and Exposition. New York:ASME, 2015.
[7] GANINE V, AMIRANTE D, HILLS N J. Aero-thermo-mechanical modelling and validation of transient effects in a high pressure turbine internal air system[C]//Proceedings of ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition. New York:ASME, 2016.
[8] GALLAR L, CALCAGNI C, PACHIDIS V, et al. Development of a one-dimensional dynamic gas turbine secondary air system model-part I:Tool components development and validation[C]//Proceedings of ASME Turbo Expo 2009:Power for Land, Sea, and Air. New York:ASME, 2010:457-465.
[9] CALCAGNI C, GALLAR L, PACHIDIS V. Development of a one-dimensional dynamic gas turbine secondary air system model-part II:Assembly and validation of a complete network[C]//Proceedings of ASME Turbo Expo 2009:Power for Land, Sea, and Air. New York:ASME, 2010:435-443.
[10] KIM Y, SIMPSON A R, LAMBERT M F. The effect of orifices and blockages on unsteady pipe flows[C]//World Environmental and Water Resources Congress 2007. Reston:American Society of Civil Engineers, 2007:1-10.
[11] MAY D, CHEW J W. Response of a disk cavity flow to gas turbine engine transients[C]//Proceedings of ASME Turbo Expo 2010:Power for Land, Sea, and Air. New York:ASME, 2010:1113-1122.
[12] MAY D, CHEW J W, SCANLON T J. Prediction of de-swirled radial inflow in rotating cavities with hysteresis[C]//Proceedings of ASME Turbo Expo 2012:Turbine Technical Conference and Exposition. New York:ASME, 2013:2037-2046.
[13] 张美华, 刘振侠, 胡剑平, 等. 旋转盘腔瞬态响应特性的研究[J].推进技术, 2014, 35(8):1056-1062. ZHANG M H, LIU Z X, HU J P, et al. Study of transient response characteristics of rotating disc cavity[J].Journal of Propulsion Technology, 2014, 35(8):1056-1062(in Chinese).
[14] 毛莎莎, 王锁芳, 胡伟学. 典型进气函数下转静盘腔瞬态响应特性研究[J].推进技术, 2019, 40(1):175-183. MAO S S, WANG S F, HU W X. Study on transient response characteristics of rotor-stator cavity with typical intake function[J].Journal of Propulsion Technology, 2019, 40(1):175-183(in Chinese).
[15] OKITA Y. Transient thermal and flow field in a turbine disk rotor-stator system[C]//Proceedings of ASME Turbo Expo 2006:Power for Land, Sea, and Air. New York:ASME, 2008:1271-1282.
[16] 杨丽红, 沈航明, 宋元明. 等温容器放气过程中对流换热模型的研究[J].中国机械工程, 2014, 25(18):2489-2495. YANG L H, SHEN H M, SONG Y M. Study on convection heat transfer model of isothermal chamber during discharge[J].China Mechanical Engineering, 2014, 25(18):2489-2495(in Chinese).
[17] DING S T, YU H, QIU T, et al. Modeling of the cavity response to rapid transient considering the effect of heat transfer:GT2018-75264[R].New York:ASME, 2018.
[18] 丁水汀, 于航, 邱天. 非绝热单孔容腔瞬态响应的零维建模[J].北京航空航天大学学报, 2018, 44(2):215-222. DING S T, YU H, QIU T. Zero-dimensional modeling for transient response of non-adiabatic cavity with single opening[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2):215-222(in Chinese).
[19] 丁水汀, 于航, 邱天, 等. 单孔容腔瞬态充气换热的理论分析方法[J].航空学报, 2020, 41(1):123221. DING S T, YU H, QIU T, et al. Theoretical analysis method for heat transfer in transient charging of a cavity with single opening[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(1):123221(in Chinese).
[20] GALLAR L, CALCAGNI C, LLORENS C, et al. Time accurate modelling of the secondary air system response to rapid transients[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2011, 225(8):946-958.
[21] 朱鹏飞. 航空发动机空气系统瞬态过程的数值模拟与实验研究[D]. 西安:西北工业大学, 2018. ZHU P F. Numeriacal simulation and experimental study on the transient process of the air system in aeroengine[D]. Xi'an:Northwestern Polytechnical University, 2018(in Chinese).
[22] NIKOLAIDIS T, WANG H N, LASKARIDIS P. Transient modelling and simulation of gas turbine secondary air system[J].Applied Thermal Engineering, 2020, 170:115038.
[23] 纪国剑. 航空发动机典型篦齿封严泄漏特性的数值和实验研究[D]. 南京:南京航空航天大学, 2008. JI G J. Numerical and experimental investigation of sealing characteristics on typical labyrinth seals in aeroengine[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2008(in Chinese).
[24] 胡剑平, 刘振侠, 朱鹏飞, 等. 多容腔耦合的瞬态响应实验研究[J].推进技术, 2020, 41(3):615-622. HU J P, LIU Z X, ZHU P F, et al. An experimental analysis of coupled transient response for multi-cavities[J].Journal of Propulsion Technology, 2020, 41(3):615-622(in Chinese).
[25] 曹楠, 窦志伟, 罗翔, 等. 轴向通流旋转盘腔换热特性[J].航空动力学报, 2018, 33(5):1178-1185. CAO N, DOU Z W, LUO X, et al. Heat transfer characteristics of a rotating cavity with axial throughflow of cooling air[J].Journal of Aerospace Power, 2018, 33(5):1178-1185(in Chinese).
[26] COREN D, CHILDS P N, LONG C A. Windage sources in smooth-walled rotating disc systems[J].Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2009, 223(4):873-888.
[27] 潘耘峰. 燃气透平冷却空气系统流体网络法研究[D]. 北京:中国科学院研究生院, 2011. PAN Y F. Investigation on fluid network method for the analysis of turbine air cooling system[D]. Beijing:Graduate School of the Chinese Academy of Sciences, 2011(in Chinese).
文章导航

/