观点

OODA智能赋能技术发展思考

  • 祝学军 ,
  • 赵长见 ,
  • 梁卓 ,
  • 谭清科
展开
  • 中国运载火箭技术研究院, 北京 100076

收稿日期: 2020-06-01

  修回日期: 2020-06-22

  网络出版日期: 2021-01-14

Thoughts on technology development of OODA empowered with AI

  • ZHU Xuejun ,
  • ZHAO Changjian ,
  • LIANG Zhuo ,
  • TAN Qingke
Expand
  • China Academy of Launch Vehicle Technology, Beijing 100076, China

Received date: 2020-06-01

  Revised date: 2020-06-22

  Online published: 2021-01-14

摘要

随着科学技术的飞速发展,信息化支持下的体系作战将是未来战争的一种主要样式,"基于感知-判断-决策-行动(OODA)以快吃慢"成为未来战争的重要制胜机理。由于战场环境日趋复杂、对抗多域多维,从战场态势到作战策略的映射关系复杂,给OODA环快速解算带来了新的挑战。为确保OODA环解算满足任务需求,将人工智能(AI)技术赋能OODA各环节,驱动各环节高效运行,缩短环路解算时间,为打赢战争提供关键支撑。首先综述了人工智能在军事领域的应用进展,分析了导弹OODA智能化赋能面临的挑战,初步提出了智能赋能OODA环涉及的相关技术的思考,以支撑导弹智能化的发展。

本文引用格式

祝学军 , 赵长见 , 梁卓 , 谭清科 . OODA智能赋能技术发展思考[J]. 航空学报, 2021 , 42(4) : 524332 -524332 . DOI: 10.7527/S1000-6893.2020.24332

Abstract

With the rapid development of science and technology, system combat supported by informationization will be a major style of the future war. "Winning by faster based on Observation-Orientation-Decision-Action (OODA)" has become an important mechanism for victory in modern wars. As the battlefield environment is going more and more complex and the confrontation is extending into variable domains and dimensions, the mapping relationship from battlefield situation to combat strategy becomes extremely complicated, posing new challenges to the OODA loop. To ensure that the OODA loop meets the task requirements, the OODA loop theory is combined with Artifical Intelligence(AI) to drive efficient operation of each loop and shorten the OODA loop time, so as to provide key support for winning the war. This paper summarizes the progress of application of AI in the military field, and analyzes the challenges of OODA empowered with AI. Then, preliminary thoughts on systematic development of the related technology involved in the OODA loop is put forward to support the development of intelligent missiles.

参考文献

[1] 张齐新. 当"OODA"遇上智能化[N]. 解放军报,2020-04-09(007). ZHANG Q X. "OODA" meets intelligence[N]. Chinese People's Liberation Army Daily, 2020-04-09(007) (in Chinese).
[2] 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6):524377. YANG W. Development of future fighters[J] Acta Aeronautica et Astronautica Sinica, 2020, 41(6):524377(in Chinese).
[3] 胡晓峰, 荣明. 智能化作战研究值得关注的几个问题[J]. 指挥与控制学报, 2018, 3(4):195-200. HU X F, RONG M. Several important questions of intelligent warfare research[J]. Journal of Command and Control, 2018, 3(4):195-200(in Chinese).
[4] 李风雷, 卢昊, 宋闯, 等. 智能化战争与无人系统技术的发展[J]. 无人系统技术, 2018, 2(1):14-23. LI F L, LU H, SONG C, et al. Development of intelligent warfare and unmanned system technology[J]. Unmanned Systems Technology, 2018, 2(1):14-23(in Chinese).
[5] 冯杰鸿. 体系智能化发展趋势及其关键技术[J]. 现代防御技术, 2020, 48(2):1-14. FENG J H. Development tendency and key technology of system intellectualization[J]. Modern Defence Technology, 2020, 48(2):1-14(in Chinese).
[6] 房桂祥, 谭跃进, 张木, 等. 基于作战环的导弹武器系统体系相对贡献率评估[J]. 系统工程与电子技术, 2020, 1(1):1-7. FANG G X, TAN Y J, ZHANG M, et al. Evaluation of relative contribution rate of missile weapon system based on combat ring[J]. Systems Engineering and Electronics, 2020, 1(1):1-7(in Chinese)
[7] 冯奋强, 崔秋祥, 刘莹. 基于"作战链"推进武器装备现代化[J]. 国防, 2019, 2(1):21-26. FENG F Q, CUI Q X, LIU Y. Promoting the modernization of weaponry and equipment on the basis of OODA[J]. National Defense, 2019, 2(1):21-26(in Chinese).
[8] 张蓬蓬. 空战体系演变及智能化发展[J]. 飞航导弹, 2019, 3(1):60-64. ZHANG P P. Evolution and intelligent development of air combat system[J]. Aerodynamic Missile Journal, 2019, 3(1):60-64(in Chinese).
[9] 张阳, 王艳正, 司光亚. 集群式电子战无人机的OODA作战环分析与建模[J]. 火力与指挥控制, 2018,8(1):31-36. ZHANG Y, WANG Y Z, SI G Y. Analysis and modeling of OODA circle of electronic warfare group UAV[J]. Fire Control & Command Control, 2018, 8(1):31-36(in Chinese).
[10] 陈士涛, 张海林. 基于作战网络模型的异构无人机集群作战能力评估[J]. 军事运筹与系统工程, 2019, 1(1):38-43. CHEN S T, ZHANG H L. Assessment of fighting capability of heterogeneous unmanned aerial vehicles cluster based on operation network model[J]. Military Operations Research and Systems Engineering, 2019, 1(1):38-43(in Chinese).
[11] JEFFREY L V. Tightening the OODA loop:Police militarization, race, and algorithmic surveillance[J]. Michigan Journal of Race and Law, 2016, 22(1), 4.
[12] 张明智, 马力. 体系对抗OODA循环鲁棒性建模及仿真分析[J]. 系统仿真学报, 2017, 29(9):1968-1976. ZHANG M Z, MA L. System-of-systems combat OODA loop robustness modeling and experiment[J]. Journal of System Simulation, 2017, 29(9):1968-1976(in Chinese).
[13] TERO B, TIMO H. A novel method for detecting APT attacks by using OODA loop and black swan theory[J]. Lecture Notes in Computer Science, 2018(1):11280.
[14] KELLY M G. The F-35's new OODA loop[J]. United States Naval Institute Proceedings, 2016, 142(3):24-28.
[15] DIEVES V. Dependability in future battle network system-transport layer ability to maintain quality of service[J]. Wireless Sensor Network, 2016, 8(10):211-228.
[16] 郑南宁. 人工智能新时代[J]. 智能科学与技术学报, 2019, 1(1):1-3. ZHENG N N. The new era of artificial intelligence[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(1):1-3(in Chinese).
[17] 黄长强. 未来空战过程智能化关键技术研究[J]. 航空兵器, 2019, 26(1):11-19. HUANG C Q. Research on key technology of future air combat process intelligentization[J]. Aero Weaponry, 2019, 26(1):11-19(in Chinese).
[18] 徐刚锋, 张旭荣, 张岩, 等. 人工智能技术在导弹武器装备领域的发展研究[J]. 战术导弹技术, 2019, 5(1):12-17. XU G F, ZHANG X R, ZHANG Y, et al. The development study of artificial intelligence technology on missile weapons[J]. Tactical Missile Technology, 2019, 5(1):12-17(in Chinese).
[19] 槐泽鹏, 龚旻, 陈克. 未来战争形态发展研究[J]. 战术导弹技术, 2018, 1(1):1-8. HUAI Z P, GONG M, CHEN K. Study of future war form development[J]. Tactical Missile Technology, 2018, 1(1):1-8(in Chinese).
[20] 包为民. 航天发展面临的控制问题与挑战[J]. 学部通讯, 2020, 2(1):72-75. BAO W M. Control problems and challenges in aerospace development[J]. Department Communication, 2020, 2(1):72-75(in Chinese).
[21] 罗荣, 王亮, 肖玉杰, 等. 深度学习技术在军事领域应用[J]. 指挥控制与仿真, 2020, 1(1):1-5. LUO R, WANG L, XIAO Y J, et al. Application of deep learning technology in military field[J]. Command Control & Simulation, 2020, 1(1):1-5(in Chinese).
[22] 包为民. 航天智能控制技术让运载火箭"会学习"[J/OL].航空学报, (2020-12-15)[2020-12-20]. http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2020.25055. BAO W M. Space intelligent control technology enables launch vehicle to "Self-Learning"[J/OL]. Acta Aeronautica et Astronautica Sinica, (2020-12-15)[2020-12-20]. http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2020.25055(in Chinese).
[23] 张晓海, 操新文. 基于深度学习的军事智能决策支持系统[J]. 指挥控制与仿真, 2018, 2(1):1-7. ZHAGN X H, CAO X W. Military intelligent decision support system based on deep learning[J]. Command Control and Simulation, 2018, 2(1):1-7(in Chinese).
[24] 潘浩. 基于深度学习的军事目标识别[D]. 杭州:杭州电子科技大学, 2018. PAN H. Deep learning based algorithm for automatic target recognition[D]. Hangzhou:Hangzhou Dianzi University, 2018(in Chinese).
[25] 甄玉美. 不同分辨力遥感图像目标识别系统研制[D]. 哈尔滨:哈尔滨工业大学, 2018. ZHEN Y M. Development of target recognition system for different resolution remote sensing images[D]. Harbin:Harbin Institute of Technology, 2018(in Chinese).
[26] 车金鸽. 基于深度学习的雷达辐射源识别[D]. 西安:西安电子科技大学, 2019. CHE J G. Radar signal recognition based on deep learning[D]. Xi'an:Xidian University (in Chinese).
[27] 宋达. 基于深度学习方法的水下目标识别技术研究[D]. 成都:电子科技大学, 2018. SONG D. Research on underwater target recognition method based on deep learning[D]. Chengdu:University of Electronic Science and Technology of China, 2018(in Chinese).
[28] 翟进有, 代冀阳, 王嘉琦. 深度残差网络的无人机多目标识别[J]. 图像学报, 2019, 40(1):158-164. ZHAI J Y, DAI J Y, WANG J Q. Multi-objective identification of UAV based on deep residual network[J]. Journal of Graphics, 2019, 40(1):158-164(in Chinese).
[29] 朱丰, 胡晓峰, 吴琳. 基于深度学习的战场态势高级理解模拟方法[J]. 火力与指挥控制, 2018, 43(8):27-32. ZHU F, HU X F, WU L. Simulation method of battlefields situation senior comprehension based on deep learning[J]. Fire Control and Command Control, 2018, 43(8):27-32(in Chinese).
[30] 廖鹰, 易卓, 胡晓峰. 基于深度学习的初级战场态势理解研究[J]. 指挥与控制学报, 2017, 3(1):67-71. LIAO Y, YI Z, HU X F. Battlefields situation elementary comprehension based on deep learning[J]. Journal of Command and Control, 2017, 3(1):67-71(in Chinese).
[31] 李高垒, 马耀飞. 基于深度网络的空战态势特征提取[J]. 系统仿真学报, 2018, 29(1):98-112. LI G L, MA Y F. Feature extraction algorithm of air combat situation based on deep neural networks[J]. Journal of System Simulation, 2018, 29(1):98-112(in Chinese).
[32] 荣明, 杨镜宇. 基于深度学习的战略威慑决策模型研究[J]. 指挥与控制学报, 2017, 3(1):44-47. RONG M, YANG J Y. Strategic deterrence decision model based on deep learning[J]. Journal of Command and Control, 2017, 3(1):44-47(in Chinese).
[33] 周来, 靳晓伟, 郑益凯. 基于深度强化学习的作战辅助决策研究[J].空天防御, 2018, 1(1):31-35. ZHOU L, JIN X W, ZHENG Y K. Research on operational decision support based on deep reinforcement learning[J]. Air and Space Defense, 2018, 1(1):31-35(in Chinese).
[34] DONG X W, LI Q D, ZHAO Q L, et al. Time-varying group formation analysis and design for general linear multi-agent systems with directed topologies[J]. International Journal of Robust and Nonlinear Control, 2017, 27(9):1640-1652.
[35] DONG X W, HU G Q. Time-varying formation tracking for linear multi-agent systems with multiple leaders[J]. IEEE Transactions on Automatic Control, 2017, 62(7):3658-3664.
[36] HUA Y Z, DONG X W, HU G Q, et al. Distributed time-varying output formation tracking for heterogeneous linear multi-agent systems with a non-autonomous leader of un-known input[J]. IEEE Transactions on Automatic Control, 2019, 64(10):4292-4299.
[37] 吴钟博, 易建强. 无人机编队支撑网络的协同通信中继策略研究[J]. 航空学报, 2020, 41(S2):724319. WU Z B, YI J Q. Research on cooperative communication relay selection method of UAV formation support networks[J]. Acta Aeronautica et Astronautica Sinica,2020,41(S2):724319(in Chinese).
[38] 姜龙亭, 魏瑞轩, 张启瑞, 等. 基于群智机理的集群防碰撞控制[J]. 航空学报, 2020, 41(S2):724294. JIANG L T, WEI R X, ZHANG Q R, et al. Anti-collision control of uavs based on swarm intelligence mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2):724291(in Chinese).
文章导航

/