流体力学与飞行力学

上/下反翼对双后掠乘波体高超特性的影响

  • 孟旭飞 ,
  • 白鹏 ,
  • 李盾 ,
  • 王荣 ,
  • 刘传振
展开
  • 中国航天空气动力技术研究院, 北京 100074

收稿日期: 2020-11-26

  修回日期: 2020-12-07

  网络出版日期: 2021-01-08

基金资助

国家自然科学基金(11672281)

Effect of dihedral wings on hypersonic performance of double swept waverider

  • MENG Xufei ,
  • BAI Peng ,
  • LI Dun ,
  • WANG Rong ,
  • LIU Chuanzhen
Expand
  • China Academy of Aerospace Aerodynamics, Beijing 100074, China

Received date: 2020-11-26

  Revised date: 2020-12-07

  Online published: 2021-01-08

Supported by

National Natural Science Foundation of China (11672281)

摘要

从密切锥乘波体理论提出给定前缘型线的乘波体设计方法,通过给定三维前缘型线分别生成具有上反和下反机翼的双后掠乘波体。使用CFD技术评估不同上/下反机翼乘波体的高超声速气动性能,并选取稳定性判据,研究机翼上下反对纵向和横侧向稳定性的影响。结果表明,上/下反机翼对"乘波"性能影响很小,在高超声速状态仍然保持了高升阻比特性;机翼上反,纵向稳定性降低,机翼下反,纵向稳定性提高;机翼上反可以提高横向稳定性,下反则降低;机翼上反和下反都会提高侧向稳定性,而且上反的效果更明显;同时机翼上反使乘波体的偏航动态稳定性明显提升,而机翼下反对偏航动态稳定性的影响随攻角增大而降低。

本文引用格式

孟旭飞 , 白鹏 , 李盾 , 王荣 , 刘传振 . 上/下反翼对双后掠乘波体高超特性的影响[J]. 航空学报, 2022 , 43(2) : 124998 -124998 . DOI: 10.7527/S1000-6893.2020.24998

Abstract

The waverider design with a given 3D leading edge is developed from the osculating-cone treatment, and customizing the leading edge curves generates double swept waveriders with dihedral and anhedral wings. Using CFD techniques, we evaluated the hypersonic performance of the waveriders, and studied the effect of the wing with positive and negative dihedral angles, namely, wing dihedral and wing anhedral, on stability. Results show that the wing dihedral exerted nearly no influence on the "wave-riding" performance, and hence a high lift-to-drag ratio was maintained in the hypersonic state. The wing dihedral decreased the longitudinal stability, while wing anhedral improved it; the former raised the lateral stability, while the latter lowered it; both improved the directional stability, and the effect of the former was stronger; the dynamic directional stability of the waveriders can be clearly improved by the wing dihedral, whereas the improvement by the wing anhedral decreased as the angle of attack increased.

参考文献

[1] NONWEILER T R F. Aerodynamic problems of manned space vehicles[J].The Journal of the Royal Aeronautical Society, 1959, 63(585):521-528.
[2] JONES J G, MOORE K C, PIKE J, et al. A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow fields[J].Ingenieur-Archiv, 1968, 37(1):56-72.
[3] RASMUSSEN M L. Waverider configurations derived from inclined circular and elliptic cones[J].Journal of Spacecraft and Rockets, 1980, 17(6):537-545.
[4] 乐贵高, 马大为, 李自勇. 椭圆锥乘波体高超声速流场数值计算[J].南京理工大学学报(自然科学版), 2006, 30(3):257-260. YUE G G, MA D W, LI Z Y. Computation of hypersonic flowfields for elliptic-cone-derived waveriders[J].Journal of Nanjing University of Science and Technology (Natural Science), 2006, 30(3):257-260(in Chinese).
[5] LOBBIA M A, SUZUKI K. Experimental investigation of a Mach 3.5 waverider designed using computational fluid dynamics[J].AIAA Journal, 2014, 53(6):1590-1601.
[6] SOBIECZKY H, DOUGHERTY F C, JONES K. Hypersonic waverider design from given shock wave[C]//The First International Waverider Symposium. Maryland:University of Maryland, 1990.
[7] SZEMA K Y, LIU Z N, MUNIPALLI R. An efficient GUI design tool for high-speed airbreathing propulsion integration[C]//28th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2010.
[8] 贺旭照, 倪鸿礼. 密切曲面锥乘波体:设计方法与性能分析[J].力学学报, 2011, 43(6):1077-1082. HE X Z, NI H L. Osculating curved cone(occ) waverider:design methods and performance analysis[J].Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6):1077-1082(in Chinese).
[9] CHEN L L, DENG X L, GUO Z, et al. A novel approach for design and analysis of volume-improved osculating-cone waveriders[J].Acta Astronautica, 2019, 161:430-445.
[10] ZHANG T T, WANG Z G, HUANG W, et al. Parameterization and optimization of hypersonic-gliding vehicle configurations during conceptual design[J].Aerospace Science and Technology, 2016, 58:225-234.
[11] DI GIORGIO S, QUAGLIARELLA D, PEZZELLA G, et al. An aerothermodynamic design optimization framework for hypersonic vehicles[J].Aerospace Science and Technology, 2019, 84:339-347.
[12] CHEN F, LIU H, ZHANG S T. Time-adaptive loosely coupled analysis on fluid-thermal-structural behaviors of hypersonic wing structures under sustained aeroheating[J].Aerospace Science and Technology, 2018, 78:620-636.
[13] RONCIONI P, NATALE P, MARINI M, et al. Numerical simulations and performance assessment of a scramjet powered cruise vehicle at Mach 8[J].Aerospace Science and Technology, 2015, 42:218-228.
[14] RODI P. Preliminary ramjet/scramjet integration with vehicles using osculating flowfield waverider forebodies[C]//30th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2012.
[15] 贾子安, 张陈安, 王柯穆, 等. 乘波布局高超声速飞行器纵向静稳定特性分析[J].中国科学:技术科学, 2014, 44(10):1114-1122. JIA Z A, ZHANG C A, WANG K M, et al. Longitudinal static stability analysis of hypersonic waveriders[J].Scientia Sinica (Technologica), 2014, 44(10):1114-1122(in Chinese).
[16] BYKERK T, VERSTRAETE D, STEELANT J. Low speed longitudinal aerodynamic, static stability and performance analysis of a hypersonic waverider[J].Aerospace Science and Technology, 2020, 96:105531.
[17] BYKERK T, VERSTRAETE D, STEELANT J. Low speed lateral-directional aerodynamic and static stability analysis of a hypersonic waverider[J].Aerospace Science and Technology, 2020, 98:105709.
[18] SACHS G, HOLZAPFEL F. Flight mechanic and aerodynamic aspects of extremely large dihedral in birds[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2007.
[19] YANG Y Q, LIU D X, MA Y P, et al. Design and flight testing of inflatable wing UAVs with ailerons[C]//11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Reston:AIAA, 2011.
[20] HE X, RASMUSSEN M L, COX R A. Waveriders with finlets[J].Journal of Aircraft, 1994, 31(5):1135-1142.
[21] LIN S C, SHEN M C. Numerical study of multidirectional-curvature waverider with finlets[J].Journal of Spacecraft and Rockets, 1996, 33(4):483-488.
[22] 刘传振, 白鹏, 陈冰雁. 双后掠乘波体设计及性能优势分析[J].航空学报, 2017, 38(6):120808. LIU C Z, BAI P, CHEN B Y. Design and property advantages analysis of double swept waverider[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(6):120808(in Chinese).
[23] LIU C Z, LIU Q, BAI P, et al. Planform-customized waverider design integrating with vortex effect[J].Aerospace Science and Technology, 2019, 86:438-443.
[24] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J].Journal of Computational Physics, 1981, 43(2):357-372.
[25] VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady state solutions[C]//31 st Aerospace Sciences Meeting. Reston:AIAA, 1993.
[26] KERMANI M, PLETT E. Modified entropy correction formula for the Roe scheme[C]//39th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2001.
[27] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J].AIAA Journal, 1994, 32(8):1598-1605.
[28] CHEN R F, WANG Z J. Fast, block lower-upper symmetric gauss-seidel scheme for arbitrary grids[J].AIAA Journal, 2000, 38(12):2238-2245.
[29] 刘周, 杨云军, 周伟江, 等. 基于RANS-LES混合方法的翼型大迎角非定常分离流动研究[J].航空学报, 2014, 35(2):372-380. LIU Z, YANG Y J, ZHOU W J, et al. Study of unsteady separation flow around airfoil at high angle of attack using hybrid RANS-LES method[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(2):372-380(in Chinese).
[30] 龚安龙, 刘周, 杨云军, 等. 高超声速激波/边界层干扰流动数值模拟研究[J].空气动力学学报, 2014, 32(6):767-771. GONG A L, LIU Z, YANG Y J, et al. Numerical study on hypersonic double-cone separated flow[J].Acta Aerodynamica Sinica, 2014, 32(6):767-771(in Chinese).
[31] 陈冰雁, 徐国武, 刘周, 等. 真实气体效应试飞器气动布局研究[J].力学季刊, 2015, 36(2):239-248. CHEN B Y, XU G W, LIU Z, et al. Aerodynamic configuration of real gas effect demonstration vehicle[J].Chinese Quarterly of Mechanics, 2015, 36(2):239-248(in Chinese).
[32] 赵弘睿, 龚安龙, 刘周, 等. 高空侧向喷流干扰效应数值研究[J].空气动力学学报, 2020, 38(5):996-1003. ZHAO H R, GONG A L, LIU Z, et al. Numerical study of lateral jet interaction at high altitude[J].Acta Aerodynamica Sinica, 2020, 38(5):996-1003(in Chinese).
[33] THOMPSON R A. Review of X-33 hypersonic aerodynamic and aerothermodynamics development[C]//International Congress of Aeronautical Science,2000.
[34] 祝立国, 王永丰, 庄逢甘, 等. 高速高机动飞行器的横航向偏离预测判据分析[J].宇航学报, 2007, 28(6):1550-1553. ZHU L G, WANG Y F, ZHUANG F G, et al. The lateral-directional departure criteria analysis of high-speed and high maneuverability aircraft[J].Journal of Astronautics, 2007, 28(6):1550-1553(in Chinese).
文章导航

/