材料工程与机械制造

基于碳纳米管薄膜的复合材料在线损伤监测

  • 曲抒旋 ,
  • 巩文斌 ,
  • 孙小珠 ,
  • 张东兴 ,
  • 梁志强 ,
  • 高丽敏 ,
  • 吕卫帮
展开
  • 1. 哈尔滨工业大学 材料科学与工程学院, 哈尔滨 150001;
    2. 中国科学院苏州纳米技术与纳米仿生研究所 先进纳米复合材料创新中心, 苏州 215123;
    3. 上海宇航系统工程研究所 空间科学机械总体研究室, 上海 201108;
    4. 苏州大学 功能纳米与软物质研究院, 苏州 215123;
    5. 中国商飞北京民用飞机技术研究中心 结构完整性部, 北京 102211

收稿日期: 2020-11-05

  修回日期: 2021-01-11

  网络出版日期: 2021-01-08

基金资助

国家自然科学基金(51503225)

On-line damage monitoring of composites based on carbon nanotube films

  • QU Shuxuan ,
  • GONG Wenbin ,
  • SUN Xiaozhu ,
  • ZHANG Dongxing ,
  • LIANG Zhiqiang ,
  • GAO Limin ,
  • LYU Weibang
Expand
  • 1. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
    2. Innovation Center for Advanced Nanocomposites, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China;
    3. General Research Office of Space Science and Machinery, Shanghai Institute of Aerospace Systems Engineering,Shanghai 201108, China;
    4. Institute of Functional Nano and Soft Materials, Soochow University, Suzhou 215123, China;
    5. Department of Structural Integrity, COMAC Beijing Aeronautical Science &Technology, Beijing 102211, China

Received date: 2020-11-05

  Revised date: 2021-01-11

  Online published: 2021-01-08

Supported by

National Natural Science Foundation of China (51503225)

摘要

考虑到纤维增强树脂基复合材料会在服役过程中因受冲击、压缩以及疲劳等因素的作用而发生损伤,基于碳纳米管薄膜优异的力电响应特性开发了一种具有在线损伤监测能力的自感知复合材料。碳纳米管可在薄膜中形成导电网络,复合材料损伤会破坏导电通路,使碳纳米管薄膜的电阻大幅度增加。通过测量自感知复合材料的边界电压并利用电阻层析成像法对碳纳米管薄膜内电导率的分布变化进行求解/成像,实现了复合材料的在线损伤监测。分别对贯穿孔损伤和I型层间断裂损伤模式进行了研究,结果表明所制备的自感知复合材料对这两种损伤模式均可实现损伤定位及图像化显示,对于贯穿孔型损伤模式可实现对面积占比0.038%的损伤进行在线监测,定位精度可达毫米级。

本文引用格式

曲抒旋 , 巩文斌 , 孙小珠 , 张东兴 , 梁志强 , 高丽敏 , 吕卫帮 . 基于碳纳米管薄膜的复合材料在线损伤监测[J]. 航空学报, 2022 , 43(1) : 424949 -424949 . DOI: 10.7527/S1000-6893.2020.24949

Abstract

Considering that fiber-reinforced polymeric composites would be damaged due to impact, compression, fatigue and other factors during service, a composite with on-line damage self-sensing capabilities was developed based on carbon nanotube films, which possess desirable mechanical and electrical properties. Using the conductive network formed by carbon nanotubes, the damage of composites will destroy the conductive path and greatly increase the resistance of carbon nanotube films. The on-line self-sensing of composite damages was realized by measuring the boundary voltage of the composite, and then solving/imaging the conductivity distribution within the composite through the Electrical Resistance Tomography. Both damages of through-hole and model-I interlaminar fracture were investigated, and the results show that for these two damage modes, the obtained composite can realize on-line damage localization as well as damage display through EIT image reconstruction. For the through hole damage mode, the damage with an area accounting for 0.038% can be monitored online. In addition, the accuracy of through-hole localization can reach millimeter level.

参考文献

[1] NAEBE M, ABOLHASANI M M, KHAYYAM H, et al. Crack damage in polymers and composites: A review[J]. Polymer Reviews, 2016, 56(1): 31-69.
[2] CHUNG D D L. Self-monitoring structural materials[J]. Materials Science and Engineering: R: Reports, 1998, 22(2): 57-78.
[3] 孙侠生, 肖迎春. 飞机结构健康监测技术的机遇与挑战[J]. 航空学报, 2014, 35(12): 3199-3212. SUN X S, XIAO Y C. Opportunities and challenges of aircraft structural health monitoring[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12): 3199-3212(in Chinese).
[4] RABIEI M, MODARRES M. Quantitative methods for structural health management using in situ acoustic emission monitoring[J]. International Journal of Fatigue, 2013, 49: 81-89.
[5] 刘源, 庞宝君, 迟润强, 等. 基于声发射的铝蜂窝板超高速撞击损伤模式识别方法[J]. 航空学报, 2017, 38(5): 220401. LIU Y, PANG B J, CHI R Q, et al. A damage pattern recognition method for hypervelocity impact on aluminum honeycomb core sandwich based on acoustic emission[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5): 220401(in Chinese).
[6] SUN Y J, YUAN Y Q, WANG L H. Composite structure health monitoring review based on FBG sensor[M]//Cloud Computing and Security. Cham: Springer International Publishing, 2018: 171-179.
[7] TULOUP C, HARIZI W, ABOURA Z, et al. On the use of in situ piezoelectric sensors for the manufacturing and structural health monitoring of polymer-matrix composites: A literature review[J]. Composite Structures, 2019, 215: 127-149.
[8] 常琦, 杨维希, 赵恒, 等. 基于多传感器的裂纹扩展监测研究[J]. 航空学报, 2020, 41(2): 223336. CHANG Q, YANG W X, ZHAO H, et al. A multi-sensor based crack propagation monitoring research[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 223336(in Chinese).
[9] 焦敬品, 李海平, 翟顺成, 等. 基于压缩感知的金属加筋板兰姆波健康监测技术[J]. 航空学报, 2019, 40(7): 422695. JIAO J P, LI H P, ZHAI S C, et al. Lamb waves health monitoring technology for metal stiffened plate based on compressive sensing[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 422695(in Chinese).
[10] 张科, 袁慎芳, 任元强, 等. 基于逆向有限元法的变形机翼鱼骨的变形重构[J]. 航空学报, 2020, 41(8): 223617. ZHANG K, YUAN S F, REN Y Q, et al. Shape reconstruction of self-adaptive morphing wings’ fishbone based on inverse finite element method[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 223617(in Chinese).
[11] HRABUSKA R, PRAUZEK M, VENCLIKOVA M, et al. Image reconstruction for electrical impedance tomography: Experimental comparison of radial basis neural network and Gauss-Newton method[J]. IFAC-PapersOnLine, 2018, 51(6): 438-443.
[12] BERA T K. Applications of electrical impedance tomography (EIT): A short review[J]. IOP Conference Series: Materials Science and Engineering, 2018, 331: 012004.
[13] THOMAS A J, KIM J J, TALLMAN T N, et al. Damage detection in self-sensing composite tubes via electrical impedance tomography[J]. Composites Part B: Engineering, 2019, 177: 107276.
[14] DAI H J, WONG E W, LIEBER C M. Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes[J]. Science, 1996, 272(5261): 523-526.
[15] WEI B Q, VAJTAI R, AJAYAN P M. Reliability and current carrying capacity of carbon nanotubes[J]. Applied Physics Letters, 2001, 79(8): 1172-1174.
[16] PONCHARAL P, WANG Z L, UGARTE D, et al. Electrostatic deflections and electromechanical resonances of carbon nanotubes[J]. Science, 1999, 283(5407): 1513-1516.
[17] YU M F, LOURIE O, DYER M J, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J]. Science, 2000, 287(5453): 637-640.
[18] LI C Y, THOSTENSON E T, CHOU T W. Sensors and actuators based on carbon nanotubes and their composites: A review[J]. Composites Science and Technology, 2008, 68(6): 1227-1249.
[19] THOSTENSON E T, REN Z F, CHOU T W. Advances in the science and technology of carbon nanotubes and their composites: A review[J]. Composites Science and Technology, 2001, 61(13): 1899-1912.
[20] KINLOCH I A, SUHR J, LOU J, et al. Composites with carbon nanotubes and graphene: An outlook[J]. Science, 2018, 362(6414): 547-553.
[21] WERNIK J M, MEGUID S A. Recent developments in multifunctional nanocomposites using carbon nanotubes[J]. Applied Mechanics Reviews, 2010, 63(5): 050801.
[22] CHA J, JUN G H, PARK J K, et al. Improvement of modulus, strength and fracture toughness of CNT/epoxy nanocomposites through the functionalization of carbon nanotubes[J]. Composites Part B: Engineering, 2017, 129: 169-179.
[23] FIEDLER B, GOJNY F H, WICHMANN M H G, et al. Fundamental aspects of nano-reinforced composites[J]. Composites Science and Technology, 2006, 66(16): 3115-3125.
[24] AL-MAHARMA A Y, SENDUR P, AL-HUNITI N. Critical review of the factors dominating the fracture toughness of CNT reinforced polymer composites[J]. 2018, 6(1): 012003.
[25] ZHAO M, MENG L H, MA L C, et al. Layer-by-layer grafting CNTs onto carbon fibers surface for enhancing the interfacial properties of epoxy resin composites[J]. Composites Science and Technology, 2018, 154: 28-36.
[26] ZHANG H, LIU Y, KUWATA M, et al. Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg[J]. Composites Part A: Applied Science and Manufacturing, 2015, 70: 102-110.
[27] LAVAGNA L, MASSELLA D, PANTANO M F, et al. Grafting carbon nanotubes onto carbon fibres doubles their effective strength and the toughness of the composite[J]. Composites Science and Technology, 2018, 166: 140-149.
[28] 于妍妍, 张远, 高丽敏, 等. 基于碳纳米管薄膜的复合材料层间增韧[J]. 航空学报, 2019, 40(10): 422900. YU Y Y, ZHANG Y, GAO L M, et al. Toughness enhancement for interlaminar fracture composite based on carbon nanotube films[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 422900(in Chinese).
[29] 张远, 于妍妍, 何静宇, 等. 碳纳米管薄膜增强复合材料I型断裂韧性研究[J]. 炭素技术, 2018, 37(4): 15-20, 32. ZHANG Y, YU Y Y, HE J Y, et al. The model I fracture toughness of composites enhanced by using carbon nanotube film[J]. Carbon Techniques, 2018, 37(4): 15-20, 32(in Chinese).
[30] TAKEDA T, NARITA F. Fracture behavior and crack sensing capability of bonded carbon fiber composite joints with carbon nanotube-based polymer adhesive layer under Mode I loading[J]. Composites Science and Technology, 2017, 146: 26-33.
[31] GOJNY F H, WICHMANN M H G, FIEDLER B, et al. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites[J]. Polymer, 2006, 47(6): 2036-2045.
[32] KOVACS J Z, VELAGALA B S, SCHULTE K, et al. Two percolation thresholds in carbon nanotube epoxy composites[J]. Composites Science and Technology, 2007, 67(5): 922-928.
[33] DAI H B, GALLO G J, SCHUMACHER T, et al. A novel methodology for spatial damage detection and imaging using a distributed carbon nanotube-based composite sensor combined with electrical impedance tomography[J]. Journal of Nondestructive Evaluation, 2016, 35(2): 26.
[34] LOYOLA B R, BRIGGS T M, ARRONCHE L, et al. Detection of spatially distributed damage in fiber-reinforced polymer composites[J]. Structural Health Monitoring, 2013, 12(3): 225-239.
[35] GALLO G J, THOSTENSON E T. Spatial damage detection in electrically anisotropic fiber-reinforced composites using carbon nanotube networks[J]. Composite Structures, 2016, 141: 14-23.
[36] NONN S, SCHAGERL M, ZHAO Y J, et al. Application of electrical impedance tomography to an anisotropic carbon fiber-reinforced polymer composite laminate for damage localization[J]. Composites Science and Technology, 2018, 160: 231-236.
[37] HOU T C, LOH K J, LYNCH J P. Spatial conductivity mapping of carbon nanotube composite thin films by electrical impedance tomography for sensing applications[J]. 2007, 18(31): 315501.
[38] 王化祥. 电学层析成像[M]. 北京: 科学出版社, 2013: 21-157. WANG H X. Electrical tomography[M]. Beijing: Science Press, 2013: 21-157(in Chinese).
[39] HOU T C, LOH K J, LYNCH J P. Electrical impedance tomography of carbon nanotube composite materials[C]//SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring. Proc SPIE 6529, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2007. San Diego: SPIE, 2007: 705-714.
[40] HU N, KARUBE Y, ARAI M, et al. Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor[J]. Carbon, 2010, 48(3): 680-687.
文章导航

/