论文

主-从多飞行器三维分布式协同制导方法

  • 李国飞 ,
  • 朱国梁 ,
  • 吕金虎 ,
  • 刘克新 ,
  • 武春风
展开
  • 1. 北京航空航天大学 网络空间安全学院, 北京 100191;
    2. 北京航空航天大学 自动化科学与电气工程学院, 北京 100191;
    3. 航天科工微电子系统研究院有限公司, 成都 610200

收稿日期: 2020-10-27

  修回日期: 2020-11-16

  网络出版日期: 2020-12-31

基金资助

国家自然科学基金(62003021);中国博士后科学基金(2020M670094)

Three-dimensional distributed cooperative guidance law for multiple leader-follower flight vehicles

  • LI Guofei ,
  • ZHU Guoliang ,
  • LYU Jinhu ,
  • LIU Kexin ,
  • WU Chunfeng
Expand
  • 1. School of Cyber Science and Technology, Beihang University, Beijing 100191, China;
    2. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China;
    3. China Aerospace Science and Industry Microelectronics System Academy, Chengdu 610200, China

Received date: 2020-10-27

  Revised date: 2020-11-16

  Online published: 2020-12-31

Supported by

National Natural Science Foundation of China (62003021); China Postdoctoral Science Foundation (2020M670094)

摘要

针对三维空间下的多飞行器协同打击问题,基于主飞行器和从飞行器架构提出了两种分布式协同制导方法,实现了所有飞行器最终对目标的同时命中。方法1在定义协调变量的基础上,通过对所选协调变量的一致性协同控制使从飞行器状态同步于主飞行器状态。方法2提出了分布式观测器对主飞行器的状态进行准确估计,各从飞行器通过跟踪观测的主飞行器状态信息实现命中时间的一致。理论分析表明,两种方法都可保证多飞行器同时命中目标。仿真结果验证了所提方法的正确性和有效性。

本文引用格式

李国飞 , 朱国梁 , 吕金虎 , 刘克新 , 武春风 . 主-从多飞行器三维分布式协同制导方法[J]. 航空学报, 2021 , 42(11) : 524926 -524926 . DOI: 10.7527/S1000-6893.2020.24926

Abstract

This paper investigates the three-dimensional cooperative operation for multiple flight vehicles. Based on the leader-follower structure, two distributed cooperative guidance strategies are presented to achieve simultaneous arrival of the vehicles. The first strategy enables the states of followers to synchronize with that of the leader via consensus control of the selected cooperative variables. In the other strategy, a distributed observer is proposed to estimate the state of the leader accurately, and the followers track the estimated information to obtain simultaneous arrival with the leader. Theoretical analysis indicates that all the flight vehicles governed by the two strategies can strike the target simultaneously. The simulation results validate the correctness and effectiveness of the proposed strategies.

参考文献

[1] 赵建博, 杨树兴. 多导弹协同制导研究综述[J]. 航空学报, 2017, 38(1):020256. ZHAO J B, YANG S X. Review of multi-missile cooperative guidance[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):020256(in Chinese).
[2] 姚郁, 郑天宇, 贺风华, 等. 飞行器末制导中的几个热点问题与挑战[J]. 航空学报, 2015, 36(8):2696-2716. YAO Y, ZHENG T Y, HE F H, et al. Several hot issues and challenges in terminal guidance of flight vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2696-2716(in Chinese).
[3] 赵恩娇, 晁涛, 王松艳, 等. 多飞行器协同制导问题研究[J]. 战术导弹技术, 2016(2):89-94. ZHAO E J, CHAO T, WANG S Y, et al. Multiple flight vehicles cooperative guidance problem[J]. Tactical Missile Technology, 2016(2):89-94(in Chinese).
[4] JEON I S, LEE J I, TAHK M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology, 2006, 14(2):260-266.
[5] LEE J I, JEON I S, TAHK M J. Guidance law to control impact time and angle[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1):301-310.
[6] 张友安, 张友根. 多导弹攻击时间与攻击角度两阶段制导[J]. 吉林大学学报(工学版), 2010, 40(5):1442-1447. ZHANG Y A, ZHANG Y G. Two stages guidance to control impact time and impact angle for multi-missiles[J]. Journal of Jilin University (Engineering and Technology Edition), 2010, 40(5):1442-1447(in Chinese).
[7] HARL N, BALAKRISHNAN S N. Impact time and angle guidance with sliding mode control[J]. IEEE Transactions on Control Systems Technology, 2012, 20(6):1436-1449.
[8] ZHOU J L, YANG J Y. Guidance law design for impact time attack against moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5):2580-2589.
[9] ZHAO S Y, ZHOU R, WEI C. Design and feasibility analysis of a closed-form guidance law with both impact angle and time constraints[J]. Journal of Astronautics, 2009, 30(3):1064-1072, 1085.
[10] GUTMAN S. Impact-time vector guidance[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(8):2110-2114.
[11] 司玉洁, 熊华, 宋勋, 等. 三维自适应终端滑模协同制导律[J]. 航空学报, 2020, 41(增刊1):723759. SI Y J, XIONG H, SONG X, et al. Three dimensional guidance law for cooperative operation based on adaptive terminal sliding mode[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1):723759(in Chinese).
[12] ZHAO J, ZHOU R, DONG Z N. Three-dimensional cooperative guidance laws against stationary and maneuvering targets[J]. Chinese Journal of Aeronautics, 2015, 28(4):1104-1120.
[13] 董晓飞, 任章, 池庆玺, 等. 有向拓扑条件下针对机动目标的分布式协同制导律设计[J]. 航空学报, 2020, 41(增刊1):723762. DONG X F, REN Z, CHI Q X, et al. Distributed cooperative guidance for maneuvering targets with directed conmunication topologies[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1):723762(in Chinese).
[14] JEON I S, LEE J I, TAHK M J. Homing guidance law for cooperative attack of multiple missiles[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1):275-280.
[15] ZHAO J, ZHOU R, DONG Z N. Three-dimensional cooperative guidance laws against stationary and maneuvering targets[J]. Chinese Journal of Aeronautics, 2015, 28(4):1104-1120.
[16] LI G F, WU Y J, XU P Y. Adaptive fault-tolerant cooperative guidance law for simultaneous arrival[J]. Aerospace Science and Technology, 2018, 82-83:243-251.
[17] 张友安, 马国欣, 王兴平. 多导弹时间协同制导:一种领弹-被领弹策略[J]. 航空学报, 2009, 30(6):1109-1118. ZHANG Y A, MA G X, WANG X P. Time-cooperative guidance for multi-missiles:A leader-follower strategy[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6):1109-1118(in Chinese).
[18] ZHAO E J, CHAO T, WANG S Y, et al. An adaptive parameter cooperative guidance law for multiple flight vehicles[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA Press, 2015.
[19] 张友安, 马国欣. 攻击时间控制的动态逆三维制导律[J]. 哈尔滨工程大学学报, 2010, 31(2):215-219. ZHANG Y A, MA G X. Dynamic inversion three-dimensional guidance law for impact time control[J]. Journal of Harbin Engineering University, 2010, 31(2):215-219(in Chinese).
[20] LU J H, CHEN G R. A time-varying complex dynamical network model and its controlled synchronization criteria[J]. IEEE Transactions on Automatic Control, 2005, 50(6):841-846.
[21] CHEN Y, XIA W G, CAO M, et al. Random asynchronous iterations in distributed coordination algorithms[J]. Automatica, 2019, 109:108505.
[22] ZUO Z Y, TIAN B L, DEFOORT M, et al. Fixed-time consensus tracking for multiagent systems with high-order integrator dynamics[J]. IEEE Transactions on Automatic Control, 2018, 63(2):563-570.
[23] 段美君, 周荻, 程大林. 基于有限时间理论的临近空间拦截器末制导律PWPF调节器研究[J]. 航空学报, 2018, 39(1):321481. DUAN M J, ZHOU D, CHENG D L. Development of terminal guidance law and PWPF modulator for near space interceptor based on finite time theory[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):321481(in Chinese).
[24] CHEN Y D, WANG J N, WANG C Y, et al. Three-dimensional cooperative homing guidance law with field-of-view constraint[J]. Journal of Guidance, Control, and Dynamics, 2019, 43(2):389-397.
[25] TIAN B L, LU H C, ZUO Z Y, et al. Fixed-time leader-follower output feedback consensus for second-order multiagent systems[J]. IEEE Transactions on Cybernetics, 2019, 49(4):1545-1550.
[26] YU W W, REN W, ZHENG W X, et al. Distributed control gains design for consensus in multi-agent systems with second-order nonlinear dynamics[J]. Automatica, 2013, 49(7):2107-2115.
[27] REN W. On consensus algorithms for double-integrator dynamics[J]. IEEE Transactions on Automatic Control, 2008, 53(6):1503-1509.
[28] QIN J H, MA Q C, SHI Y, et al. Recent advances in consensus of multi-agent systems:A brief survey[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6):4972-4983.
文章导航

/