论文

基于网口轨迹的空间绳网捕获

  • 潘仕琦 ,
  • 徐波
展开
  • 1. 南京大学 天文与空间科学学院, 南京 210023;
    2. 中山大学 航空航天学院, 广州 510006

收稿日期: 2020-10-09

  修回日期: 2020-11-21

  网络出版日期: 2020-12-31

基金资助

国防基础科研计划(JCK2020110C096)

Space net capture based on net mouth trajectory

  • PAN Shiqi ,
  • XU Bo
Expand
  • 1. School of Astronomy and Space Science, Nanjing University, Nanjing 210023, China;
    2. School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, China

Received date: 2020-10-09

  Revised date: 2020-11-21

  Online published: 2020-12-31

Supported by

Basic Research Project (JCKY2020110C096)

摘要

空间绳网是一种柔性的捕获技术,为更准确地研究绳网捕获空间目标的过程,提出了一种基于网口轨迹的分析方法。采用集中质量法和Hertz接触理论构建了绳网捕获目标的动力学模型。将绳网捕获目标的过程按时间先后顺序分为自由展开、包裹目标以及利用收口装置捕获目标3个阶段进行研究。基于对网口轨迹的分析,提出了绳网成功捕获目标的评价指标,重点对捕获过程中涉及的相关参数进行分析,评估了包括发射速度、捕获距离、收口时间以及偏心距离等在内的捕获参数对绳网捕获目标过程的影响。仿真结果表明,基于网口轨迹的分析方法可以更直观全面地分析绳网捕获目标的过程,并为捕获参数的选择提供参考依据,以提高绳网捕获目标的成功率。

本文引用格式

潘仕琦 , 徐波 . 基于网口轨迹的空间绳网捕获[J]. 航空学报, 2021 , 42(11) : 524850 -524850 . DOI: 10.7527/S1000-6893.2020.24850

Abstract

Space net is a flexible capture technology. To analyze the process of capturing target more accurately, an analysis method based on the net mouth trajectory is proposed. Using the mass spring-damper model and Hertz contact theory, a dynamics model of net capture is established. According to the time sequence, the process of net capture is divided into three stages:deploying, wrapping and capturing. Based on the trajectory analysis of the net mouth, the evaluation index for the capture success is proposed. This paper focuses on the analysis of relevant capture parameters involved in the capture process. These capture parameters include the shooting velocity, capture distance, moment of net mouth closure, and eccentric distance. The result shows that the analysis method based on the net mouth trajectory can analyze the net capture process more comprehensively and directly. The method can provide a reference for selection of capture parameters to improve the success rate of target capture by the net.

参考文献

[1] 郭吉丰, 王班, 谭春林, 等. 空间非合作目标物柔性捕获技术进展[J]. 宇航学报, 2020, 41(2):125-135. GUO J F, WANG B, TAN C L, et al. Development of flexible capture technology for space non-cooperative target[J]. Journal of Astronautics, 2020, 41(2):125-135(in Chinese).
[2] Bremen A S. Robotic geostationary orbit restorer (ROGER) Phase A Final report:15706/01/NL/WK[R]. Paris:ESA, 2003.
[3] Bischof B, Kerstein L, Starke J, et al. ROGER-Robotic geostationary orbit restorer[J]. Science and Technology Series, 2004, 109:183-193.
[4] 张青斌, 孙国鹏, 丰志伟, 等. 柔性绳网动力学建模与天地差异性分析[J]. 宇航学报, 2014, 35(8):871-877. ZHANG Q B, SUN G P, FENG Z W, et al. Dynamics modeling and differentia analysis between space and ground for flexible cable net[J]. Journal of Astronautics, 2014, 35(8):871-877(in Chinese).
[5] GAO Q Y, ZHANG Q B, PENG W Y, et al. Dynamics modelling and ground test of space nets[C]//20167th International Conference on Mechanical and Aerospace Engineering (ICMAE). Piscataway:IEEE Press, 2016:587-591.
[6] SHAN M H, GUO J, GILL E. Deployment dynamics of tethered-net for space debris removal[J]. Acta Astronautica, 2017, 132:293-302.
[7] SI J Y, PANG Z J, DU Z H, et al. Dynamics modeling and simulation of self-collision of tether-net for space debris removal[J]. Advances in Space Research, 2019, 64(9):1675-1687.
[8] 于洋, 宝音贺西, 李俊峰. 空间飞网抛射展开动力学建模与仿真[J]. 宇航学报, 2010, 31(5):1289-1296. YU Y, BAO Y, LI J F. Modeling and simulation of projecting deployment dynamics of space webs[J]. Journal of Astronautics, 2010, 31(5):1289-1296(in Chinese).
[9] MANKALA K K, AGRAWAL S K. Dynamic modeling and simulation of impact in tether net/gripper systems[J]. Multibody System Dynamics, 2004, 11(3):235-250.
[10] BENVENUTO R, SALVI S, LAVAGNA M. Dynamics analysis and GNC design of flexible systems for space debris active removal[J]. Acta Astronautica, 2015, 110:247-265.
[11] 甄明, 杨乐平, 张青斌. 基于附加约束方法的空间飞网碰撞动力学与仿真[J]. 载人航天, 2017, 23(4):498-505. ZHEN M, YANG L P, ZHANG Q B. Contact dynamics and simulation of space net based on appending constraint method[J]. Manned Spaceflight, 2017, 23(4):498-505(in Chinese).
[12] 甄明, 杨乐平, 张青斌. 空间飞网地面碰撞试验与仿真[J]. 国防科技大学学报, 2018, 40(5):171-176. ZHEN M, YANG L P, ZHANG Q B. Ground impact test and its simulation of space net[J]. Journal of National University of Defense Technology, 2018, 40(5):171-176(in Chinese).
[13] 刘海涛, 杨乐平, 张青斌, 等. 基于正交试验的空间绳网展开参数灵敏度分析[J]. 动力学与控制学报, 2018, 16(2):144-150. LIU H T, YANG L P, ZHANG Q B, et al. Parameter sensitivity analysis of space net deployment based on orthogonal experiment[J]. Journal of Dynamics and Control, 2018, 16(2):144-150(in Chinese).
[14] CHEN Q Q, ZHANG Q B, GAO Q Y, et al. Design and optimization of a space net capture system based on a multi-objective evolutionary algorithm[J]. Acta Astronautica, 2020, 167:286-295.
[15] BARNES C M, BOTTA E M. A quality index for net-based capture of space debris[J]. Acta Astronautica, 2020, 176:455-463.
[16] 陈钦. 空间绳网系统设计与动力学研究[D]. 长沙:国防科学技术大学, 2010. CHEN Q. Design and dynamics of an orbital net-capture system[D]. Changsha:National University of Defense Technology, 2010(in Chinese).
[17] BOTTA E M, SHARF I, MISRA A K. Simulation of tether-nets for capture of space debris and small asteroids[J]. Acta Astronautica, 2019, 155:448-461.
[18] 张江. 空间绳网捕获过程碰撞动力学研究[D]. 哈尔滨:哈尔滨工业大学, 2015. ZHANG J. Contact dynamics of space net on capturing target[D]. Harbin:Harbin Institute of Technology, 2015(in Chinese).
[19] 王波, 郭吉丰. 采用超声波电机的空间飞网自适应收口机构设计[J]. 宇航学报, 2013, 34(3):308-313. WANG B, GUO J F. Design of self-adaptative take-up mechanism for space net using ultrasonic motor[J].Journal of Astronautics, 2013, 34(3):308-313(in Chinese).
[20] SHARF I, THOMSEN B, BOTTA E M, et al. Experiments and simulation of a net closing mechanism for tether-net capture of space debris[J]. Acta Astronautica, 2017, 139:332-343.
[21] BOTTA E M, SHARF I, MISRA A K. Energy and momentum analysis of the deployment dynamics of nets in space[J]. Acta Astronautica, 2017, 140:554-564.
[22] 付杰, 庞兆君, 司骥跃, 等. 空间绳网捕获过程动力学与仿真研究[J]. 机械科学与技术, 2020, 39(7):1133-1138. FU J, PANG Z J, SI J Y, et al. Dynamics simulation of acquisition process of space net[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(7):1133-1138(in Chinese).
文章导航

/