流体力学与飞行力学

冠齿喷管射流冲击半圆形靶面的对流换热

  • 吕元伟 ,
  • 张靖周 ,
  • 单勇 ,
  • 孙文静
展开
  • 南京航空航天大学 能源与动力学院 江苏省航空动力系统重点实验室, 南京 210016

收稿日期: 2020-09-17

  修回日期: 2020-10-14

  网络出版日期: 2020-12-31

基金资助

国家自然科学基金(51776097)

Convective heat transfer of chevron-nozzle jet impingement on semi-circular surfaces

  • LYU Yuanwei ,
  • ZHANG Jingzhou ,
  • SHAN Yong ,
  • SUN Wenjing
Expand
  • Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2020-09-17

  Revised date: 2020-10-14

  Online published: 2020-12-31

Supported by

National Natural Science Foundation of China (51776097)

摘要

针对具有相同相对曲率(d/D=0.1)的凹形和凸形半圆柱靶面,在典型的雷诺数(Re=5 000~12 000)和无因次冲击距离(H/d=1~8)下进行了射流冲击对流换热的实验研究,同时在特定的射流雷诺数下进行了射流冲击大涡模拟分析,以揭示冠齿喷管在不同形状靶面上的强化传热作用机制。研究结果表明:射流喷管和靶面形状对于射流驻点附近的流场和对流换热具有显著的影响,冠齿喷管出口诱导的流向涡改变了圆形射流发展中的轴对称环形涡内在特征,无论是凹形还是凸形靶面,冠齿喷管相对于圆形喷管都体现出一定的强化射流传热效果;与凸形靶面相比,射流冲击凹形靶面受到凹腔内部的回流影响,导致冠齿喷管射流冲击对流换热的降低。

本文引用格式

吕元伟 , 张靖周 , 单勇 , 孙文静 . 冠齿喷管射流冲击半圆形靶面的对流换热[J]. 航空学报, 2021 , 42(7) : 124762 -124762 . DOI: 10.7527/S1000-6893.2020.24762

Abstract

An experimental research is performed to illustrate the different mechanisms of the chevron nozzle in improving jet impingement heat transfer over concave and convex semi-circular target surfaces with the same relative curvature (d/D) of 0.1. The experimental tests are carried out with jet Reynolds numbers (Re) ranging from 5 000 to 12 000 and dimensionless nozzle-to-surface distances (H/d) ranging from 1 to 8. Simultaneously, computations based on the large eddy simulation approach are conducted with a specific jet Reynolds number to characterize the flow dynamics of the chevron jet impingement on the different target surfaces. Results show that both the nozzle shape and the target surface shape significantly affect the jet flow dynamics and heat transfer in the vicinity of jet stagnation. For the chevron nozzle, the streamwise vortices developed from the chevron notches change the vortical coherence of the axisymmetric toroidal vortices in the round jet development. Despite of the target surface shape, the chevron nozzle is confirmed to be capable of enhancing the jet impingement heat transfer related to the round nozzle. Compared to that on the convex surface, the jet impingement on the concave surface is affected by the recirculation flow inside the concave cavity, leading to a degradation of chevron-nozzle jet impingement heat transfer, particularly at large nozzle-to-surface distances.

参考文献

[1] BUNKER R S. Gas turbine heat transfer:Ten remaining hot gas path challenges[J]. Journal of Turbomachinery, 2007, 129(2):193-201.
[2] 郭之强, 郑梅, 董威, 等. 表面凸起对机翼热气防冰腔内换热强化的影响[J]. 航空学报, 2017, 38(2):520718. GUO Z Q, ZHENG M, DONG W, et al. Influence of surface convex on heat transfer enhancement of wing hot air anti-icing system[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):520718(in Chinese).
[3] 高杰, 郑群, 岳国强, 等. 燃气轮机涡轮叶顶间隙气热技术研究进展[J]. 航空学报, 2017, 38(9):521019. GAO J, ZHENG Q, YUE G Q, et al. Research progress on turbine blade tip aerodynamics and heat transfer technology for gas turbines[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):521019(in Chinese).
[4] COLUCCI D W, VISKANTA R. Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet[J]. Experimental Thermal and Fluid Science, 1996, 13(1):71-80.
[5] LEE J, LEE S J. The effect of nozzle configuration on stagnation region heat transfer enhancement of axisymmetric jet impingement[J]. International Journal of Heat and Mass Transfer, 2000, 43(18):3497-3509.
[6] GULATI P, KATTI V, PRABHU S V. Influence of the shape of the nozzle on local heat transfer distribution between smooth flat surface and impinging air jet[J]. International Journal of Thermal Sciences, 2009, 48(3):602-617.
[7] CARLOMAGNO G M, IANIRO A. Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance:A review[J]. Experimental Thermal and Fluid Science, 2014, 58:15-35.
[8] VIOLATO D, SCARANO F. Three-dimensional evolution of flow structures in transitional circular and chevron jets[J]. Physics of Fluids, 2011, 23(12):124104.
[9] VIOLATO D, IANIRO A, CARDONE G, et al. Three-dimensional vortex dynamics and convective heat transfer in circular and chevron impinging jets[J]. International Journal of Heat and Fluid Flow, 2012, 37:22-36.
[10] YU Y Z, ZHANG J Z, XU H S. Convective heat transfer by a row of confined air jets from round holes equipped with triangular tabs[J]. International Journal of Heat and Mass Transfer, 2014, 72:222-233.
[11] VINZE R, CHANDEL S, LIMAYE M D, et al. Local heat transfer distribution between smooth flat surface and impinging incompressible air jet from a chevron nozzle[J]. Experimental Thermal and Fluid Science, 2016, 78:124-136.
[12] 吕元伟, 张靖周, 王博滟, 等. 冠齿喷嘴射流冲击平直靶面对流换热实验[J]. 航空学报, 2018, 39(3):121694. LYU Y W, ZHANG J Z, WANG B Y, et al. Experimental of chevron nozzle jet impingement heat transfer on flat targeting surface[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):121694(in Chinese).
[13] CRISPO C M, GRECO C S, AVALLONE F, et al. On the flow organization of a chevron synthetic jet[J]. Experimental Thermal and Fluid Science, 2017, 82:136-146.
[14] CRISPO C M, GRECO C S, CARDONE G. Convective heat transfer in circular and chevron impinging synthetic jets[J]. International Journal of Heat and Mass Transfer, 2018, 126:969-979.
[15] LYU Y W, ZHANG J Z, LIU X C, et al. Experimental investigation of impinging heat transfer of the pulsed chevron jet on a semi-cylindrical concave plate[J]. Journal of Heat Transfer, 2019, 141:032201.
[16] CORNARO C, FLEISCHER A S, GOLDSTEIN R J. Flow visualization of a round jet impinging on cylindrical surfaces[J]. Experimental Thermal and Fluid Science, 1999, 20(2):66-78.
[17] LEE D H, CHUNG Y S, KIM D S. Turbulent flow and heat transfer measurements on a curved surface with a fully developed round impinging jet[J]. International Journal of Heat and Fluid Flow, 1997, 18(1):160-169.
[18] LEE D H, CHUNG Y S, WON S Y. The effect of concave surface curvature on heat transfer from a fully developed round impinging jet[J]. International Journal of Heat and Mass Transfer, 1999, 42(13):2489-2497.
[19] FENOT M, DORIGNAC E, VULLIERME J J. An experimental study on hot round jets impinging a concave surface[J]. International Journal of Heat and Fluid Flow, 2008, 29(4):945-956.
[20] BU X Q, PENG L, LIN G P, et al. Experimental study of jet impingement heat transfer on a variable-curvature concave surface in a wing leading edge[J]. International Journal of Heat and Mass Transfer, 2015, 90:92-101.
[21] ZHOU Y, LIN G P, BU X Q, et al. Experimental study of curvature effects on jet impingement heat transfer on concave surfaces[J]. Chinese Journal of Aeronautics, 2017, 30(2):586-594.
[22] GUAN T, ZHANG J Z, SHAN Y, et al. Conjugate heat transfer on leading edge of a conical wall subjected to external cold flow and internal hot jet impingement from chevron nozzle-Part 1:Experimental analysis[J]. International Journal of Heat and Mass Transfer, 2017, 106:329-338.
[23] GUAN T, ZHANG J Z, SHAN Y, et al. Conjugate heat transfer on leading edge of a conical wall subjected to external cold flow and internal hot jet impingement from chevron nozzle-Part 2:Numerical analysis[J]. International Journal of Heat and Mass Transfer, 2017, 106:329-338.
[24] LYU Y W, ZHANG J Z, LIU X C, et al. Experimental study of single-row chevron-jet impingement heat transfer on concave surfaces with different curvatures[J]. Chinese Journal of Aeronautics, 2019, 32(10):2275-2285.
[25] 李鑫郡, 张靖周, 谭晓茗. 单个压电风扇传热特性[J]. 航空学报, 2017, 38(7):120982. LI X J, ZHANG J Z, TAN X M. Characteristics of heat transfer with single piezoelectric fan[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):120982(in Chinese).
[26] MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1):3-17.
[27] LILLY D K. A proposed modification of the germanosubgrid-scale closure method[J]. Physics of Fluids A:Fluid Dynamics, 1992, 4:633-635.
[28] HUNT J C R, WRAY A A, MOIN P. Eddies, streams, and convergence zones in turbulence flows:CTR-S88[R]. Stanford:Stanford University, 1988.
文章导航

/