Motion measurement and state estimation of the non-cooperative target play an important role in the development of space technology. Estimation of the relative state of the non-cooperative target is a difficult problem. In the traditional extended Kalman filter algorithm, it is needed to estimate the centroid position of the non-cooperative target, which increases the dimension of state variables and uncertainty of the system, and thus affects the convergence speed of extended Kalman filtering. In this paper, a relative navigation method for non-cooperative target based on the sequence image is proposed. The attitude estimation of non-cooperative target can be realized without estimation of the centroid position, then the centroid position can be estimated based on the attitude estimated before. The relationship between the measured value and the true attitude of the non-cooperative target is derived. The sequence-image based measurement model is constructed. The state formula without the centroid position of the non-cooperative target and the state formula based on the position and velocity of non-cooperative target are established. An extended Kalman filter algorithm for state estimation of the non-cooperative target is developed. It is shown that the proposed method can converge rapidly within 50 samples times (i.e., 5 seconds) at a sampling frequency of 10HZ in the simulation, and is thus beneficial to the on-orbit service and maintenance of space vehicles.
[1] TAFAZOLI M. A study of on-orbit spacecraft failures[J]. Acta Astronautica, 2009, 64(2-3):195-205.
[2] FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68(8):1-26.
[3] AKIN D, SULLIVAN B. A survey of serviceable spacecraft failures[C]//AIAA Space Conference & Exposition.Reston:AIAA, 2001.
[4] LI W J, CHENG D Y, LIU X G, et al. On-orbit service (OOS) of spacecraft:A review of engineering developments[J]. Progress in Aerospace Sciences, 2019, 108:32-120.
[5] 周军, 白博, 于晓洲. 一种非合作目标相对位置和姿态确定方法[J]. 宇航学报, 2011, 32(3):516-521. ZHOU J, BAI B, YU X Z. A new method of relative position and attitude determination for non-cooperative target[J]. Journal of Astronautics, 2011, 32(3):516-521(in Chinese).
[6] SHAN M H, GUO J, GILL E. Review and comparison of active space debris capturing and removal methods[J]. Progress in Aerospace Sciences, 2016, 80:18-32.
[7] ZHOU B Z, CAI G P, LIU Y M, et al. Motion prediction of a non-cooperative space target[J]. Advances in Space Research, 2017, 61(1):207-222.
[8] AGHILI F. A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics[J]. IEEE Transactions on Robotics, 2012, 28(3):634-649.
[9] TERUI F, KAMIMURA H, NISHIDA S I. Motion estimation to a failed satellite on orbit using stereo vision and 3D model matching[C]//2006 9th International Conference on Control, Automation, Robotics and Vision, Singapore, 2006:1-8.
[10] XU W F, LIANG B, LI C, et al. A modelling and simulation system of space robot for capturing non-cooperative target[J]. Mathematical Modelling of Systems, 2009, 15(4):371-393.
[11] 王大轶, 张磊, 朱卫红, 等. 基于双目光学图像信息的空间非合作目标自主相对导航方法[J]. 中国科学:物理学力学天文学, 2019, 49(2):024509. WANG D Y, ZHANG L, ZHU W H, et al. Autonomous relative navigation for noncooperative target using stereo vision measurements[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2019, 49(2):024509(in Chinese).
[12] KIM S G, CRASSIDIS J L, CHENG Y, et al. Kalman filtering for relative spacecraft attitude and position estimation[J]. Journal of Guidance Control & Dynamics, 2007, 30(1):133-143.
[13] 王大轶, 葛东明, 史纪鑫,等. 基于序列图像的非合作目标自主导航及验证[J]. 南京航空航天大学学报, 2018, 50(6):727-733. WANG D Y, GE D M, SHI J X, et al. Non-cooperative target autonomous navigation and verification based on sequence image[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(6):727-733(in Chinese).
[14] ZHANG Y Z, HUANG P F, SONG K H, et al. An angles-only navigation and control scheme for non-cooperative rendezvous operations[J]. IEEE Transactions on Industrial Electronics, 2019,66(11):8618-8627.
[15] CHEN F, ZHOU Y, LI R H, et al. Relative position and pose measurement approach of specific operation site of space non-cooperative target[C]//MIPPR 2015:Pattern Recognition and Computer Vision, 2015.
[16] 王楷, 陈统, 徐世杰. 基于双视线测量的相对导航方法[J]. 航空学报, 2011, 32(6):1084-1091. WANG K, CHEN T, XU S J. A method of double line-of-sight measurement relative navigation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):1084-1091(in Chinese).
[17] 徐培智, 徐贵力, 王彪,等. 基于立体视觉的非合作目标位姿测量[J]. 计算机与现代化, 2013(8):85-91. XU P Z, XU G L, WANG B, et al. Pose measurement of non-cooperative target based on stereo vision[J]. Computer and Modernization, 2013(8):85-91(in Chinese).
[18] SEGAL S, CARMI A, GURFIL P. Stereovision-based estimation of relative dynamics between noncooperative satellites:Theory and experiments[J]. IEEE Transactions on Control Systems Technology, 2014, 22(2):568-584.
[19] PENG J Q, XU W F, LIANG B, et al. Pose measurement and motion estimation of space non-cooperative targets based on laser radar and stereo-vision fusion[J]. IEEE Sensors Journal, 2018, 19(8):3008-3019.
[20] AGHIL F, PARSA K. Motion and parameter estimation of space objects using laser-vision data[J]. Journal of Guidance Control & Dynamics, 2009, 32(2):537-549.
[21] ZHANG L J, ZHANG S F, YANG H B, et al. Relative attitude and position estimation for a tumbling spacecraft[J]. Aerospace Science and Technology, 2015, 42:97-105.
[22] GE D M, WANG D Y, ZOU Y J, et al. Motion and inertial parameter estimation of non-cooperative target on orbit using stereo vision[J]. Advances in Space Research, 2020, 66(6):1475-1484.
[23] PESCE V, LAVAGNA M, BEVILACQUA R. Stereovision-based pose and inertia estimation of unknown and uncooperative space objects[J]. Advances in Space Research, 2017, 59(1):236-251.