In order to solve the vibration problem of model support system in high-speed wind tunnel test, piezoelectric stack actuators are embedded into sting to form an integrated active vibration damping structure. The vibration characteristics of the support system during wind tunnel test and the vibration control mechanism of the active vibra-tion damping system are studied, and the coupled dynamic model of model support system structure with piezoelectric stack actuator is established. Utilizing modal controllability and modal cost theory, the quantitative description method of control ability of active vibration damping structure is given. The optimization design objective function, which can reflect the controllability of main controlled modes of the system, is then constructed. In order to improve the control ability of the active vibration damping structure for an idealized model support system, optimization design is con-ducted using genetic algorithm, with analytical dynamic equations derived and also mathematical expression of the optimization problem and the constraint conditions given. The results show that the optimization design method pro-posed in this paper can significantly improve the controllability of active vibration damping structure, on the premise of meeting the constraint requirements.
[1]YOUNG C P, POPERNACK T G, GLOSS B B.National transonic facility model and model support vibration problems[J].AIAA 16th Aerodynamic Ground Testing Conference, 1990, :-
[2]EDWARDS J W.National transonic facility model and tunnel vibrations[J].Journal of Aircraft, 2009, 46(1):46-52
[3] YOUNG C P, BUEHRLE R D, BALAKRISHNA S, et al.Effects of vibration on inertial wind-tunnel model attitude measurement devices[J].NASA Report, 1994, :-
[4] BUEHRLE R D, YOUNG C P.Modal Correction Method for Dynamically Induced Errors in Wind Tunnel Model Attitude Measurements[J].NASA Report, 1995, :-
[5]叶正寅, 谢飞.弹性振动对翼型失速迎角附近流场的影响[J].航空学报, 2006, 27(6):1028-1032
[6]YE Z Y, XIE F.The effects of elastic vibration on the flow field near stall-incidence of the airfoil[J].Acta Aeronautica et Astronautica Sinica, 2006, 27(6):1028-1032
[7]叶正寅, 解亚军, 武洁.模型振动对翼型流场和气动性能的影响[J].工程力学, 2009, 26(4):240-245
[8]YE Z Y, XIE Y J, WU J.The effects of wind-tunnel model vibration on flow field and aerodynamics of an airfoil[J].Engineering Mechanics, 2009, 26(4):240-245
[9] BUEHRLE R D.System dynamic analysis of a wind tunnel model with applications to improve aerodynamic data quality[J].University of Cincinnati, 1997, :1-16
[10]陈卫东, 邵敏强, 杨兴华等.跨声速风洞测力模型主动减振系统的试验研究[J].振动工程学报, 2007, 20(1):91-96
[11]CHEN W D, SHAO M Q, YANG X H, et al.Experimental evaluation of an active vibration control system for wind tunnel aerodynamic models[J].Journal of Vibration Engineering, 2007, 20(1):91-96
[12] SHEN X, DAI Y K, Chen M X, et al.Active vibration control of the sting used in wind tunnel: comparison of three control algorithms[J].Shock and Vibration, 2018, /(/):/-/
[13]LIU W, ZHOU M D, WEN Z Q, et al.An active damping vibration control system for wind tunnel models[J].Chinese Journal of Aeronautics, 2019, 32(9):2109-2120
[14]佘重禧, 陈卫东, 邵敏强.跨声速风洞测力模型的降阶及H∞减振控制[J].噪声与振动控制, 2014, 34(1):67-71
[15]SHE C X, CHEN W D, SHAO M Q.Model reduction and active vibration suppression of a wind tunnel test model by H∞ control[J].Noise and Vibration Control, 2014, 34(1):67-71
[16] FEHREN H, GNAUERT H, WIMMEL R.Validation testing with the active damping system in the European transonic wind tunnel[J].Proceedings of 39th AIAA Aerospace Sciences Meeting, 1990, :-
[17] QUEST J.ETW - High quality test performance in cryo-genic environment[J].21st AIAA Aerodynamic Mea-surement Technology and Ground Testing Conference, 2000, :-
[18] SCHIMANSKI D, QUEST J.Tools and techniques for high Reynolds number testing status and recent im-provements at ETW[J].41st Aerospace Sciences Meet-ing and Exhibit, 2003, :-
[19] SCHIMANSKI D, QUEST J.Flight Reynolds Number Testing at ETW[J]., 2009, :-
[20] BALAKRISHNA S, HOULDEN H, BUTLER D H, et al.Development of a wind tunnel active vibration reduction system[J].Proceedings of 45th AIAA Aero-space Sciences Meeting and Exhibit, 2007, :961-974
[21] BALAKRISHNA S, BUTLER D H, WHITE R, et al.Active damping of sting vibrations in transonic wind tunnel testing[J].46th AIAA Aerospace Sciences Meeting and Exhibit, 2008, :-
[22] BALAKRISHNA S, BUTLER D H, ACHESON M J, et al.Design and performance of an active sting damper for the NASA common research models[J].49th AIAA Aerospace Sciences Meeting and Exhibit, 2011, :1-9
[23] RIVERS M B, BALAKRISHNA S.NASA common research model test envelope extension with active sting damping at NTF[J].32nd AIAA Applied Aerodynamics Conference., 2014, :1-14
[24]余立, 杨兴华, 寇西平等.跨声速风洞模型主动减振系统试验研究[J].南京航空航天大学学报, 2019, 51(4):526-533
[25]YU L, YANG X H, KOU X P, et al.Experiment on active vibration reduction system for transonic wind tunnel model[J].Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(4):526-533
[26]宋来收, 夏品奇.直升机振动主动控制的机身压电叠层作动器耦合优化法[J].航空学报, 2011, 32(10):1835-1841
[27]SONG L S, XIA P Q.Coupled fuselage/piezoelectric stack actuator optimization method for active vibration control of helicopter[J].Acta Aeronautica et Astronauti-ca Sinica, 2011, 32(10):1835-1841
[28]HAMDAN A M A, NAYFEH A H.Measures of modal controllability and observability for first-and second-order linear systems[J].Journal of Guidance, Control, and Dynamics, 1989, 12(3):421-428
[29] SKELTON R E, SINGH R, RAMAKRISHNAN J.Component model reduction by component cost analysis[J].AIAA Guidance, Navigation, and Control Conference, 1988, :-
[30]梁力, 杨智春, 欧阳炎等.垂尾抖振主动控制的压电作动器布局优化[J].航空学报, 2016, 37(10):3035-3043
[31]LIANG L, YANG Z C, OUYANG Y, et al.Optimization of piezoelectric actuator configuration on a vertical tail for buffeting control[J].Acta Aeronautica et Astronauti-ca Sinica, 2016, 37(10):3035-3043