固体力学与飞行器总体设计

基于功能原理的颤振模态参与度分析方法

  • 王昕江 ,
  • 刘子强 ,
  • 郭力 ,
  • 付志超 ,
  • 吕计男
展开
  • 1. 中国航天空气动力技术研究院, 北京 100074;
    2. 中国运载火箭技术研究院, 北京 100076

收稿日期: 2020-10-26

  修回日期: 2020-12-30

  网络出版日期: 2020-12-25

Analysis method for flutter mode indicator based on principle of work and power

  • WANG Xinjiang ,
  • LIU Ziqiang ,
  • GUO Li ,
  • FU Zhichao ,
  • LYU Jinan
Expand
  • 1. China Academy of Aerospace Aerodynamics, Beijing 100074, China;
    2. China Academy of Launch Vehicle Technology, Beijing 100076, China

Received date: 2020-10-26

  Revised date: 2020-12-30

  Online published: 2020-12-25

摘要

颤振边界与颤振耦合机理对飞行器设计与颤振试验设计有着重要意义。模态坐标下的颤振计算通过各阶广义坐标的变化特性来确定颤振边界,并对颤振耦合机理进行分析。然而这常常依赖设计人员的工程经验,难以保证判别标准量化统一。基于功能原理提出了一种新的颤振模态参与度分析方法,通过广义坐标下广义气动力做功的能量累积,实现颤振模态参与度分析。分别采用频域方法与CFD/CSD方法对AGARD445.6标模进行颤振计算,验证了所提模态参与度分析方法的正确性。随后针对双体飞机颤振计算中发现的"漂移频率"现象,使用所提方法进行了解释,凸显了方法的优势。综合表明,所提模态参与度分析方法较好地反映了颤振耦合机理,具有指标正确可靠、结果归一化强、物理意义明确、适用于复杂结构复杂模态的特点。

本文引用格式

王昕江 , 刘子强 , 郭力 , 付志超 , 吕计男 . 基于功能原理的颤振模态参与度分析方法[J]. 航空学报, 2022 , 43(1) : 224920 -224920 . DOI: 10.7527/S1000-6893.2020.24920

Abstract

Flutter boundaries and flutter coupling mechanisms are of high significance for aircraft design and flutter tests. The flutter boundary is determined by the distinguishing characteristic of the generalized coordinate of modes, which often depends on the experience of designers and therefore it is difficult to guarantee the quantitative uniformity of discriminant standards. This paper proposes a new method for the flutter mode indicator analysis based on the principle of work and power. The analysis is realized through energy accumulation of generalized force work on modal coordinates. Rational function approximation and the CFD/CSD method are used respectively in the AGARD445.6 flutter mode indicator analysis to verify the proposed method. Then, the ‘frequency drifting’ phenomenon of twin-fuselage aircraft is explained logically by the proposed method, highlighting the advantage of the proposed method. The results show that the proposed method well reflects the flutter coupling mechanism, exhibiting characteristics of reliable flutter modes indexes, clear physical meaning and strong results normalization.

参考文献

[1] 陈桂彬, 杨超, 邹丛青. 气动弹性设计基础[M]. 2版. 北京: 北京航空航天大学出版社, 2010. CHEN G B, YANG C, ZOU C Q. Aeroelastic design foundation[M]. Beijing: Beihang University Press, 2010(in Chinese).
[2] 马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3): 623418. MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623418(in Chinese).
[3] 赵永辉, 黄锐. 高等气动弹性力学与控制[M]. 北京: 科学出版社, 2015. ZHAO Y H, HUANG R. Advanced aeroelastic and control[M]. Beijing: Science Press, 2015(in Chinese).
[4] 李秋彦, 李刚, 魏洋天, 等. 先进战斗机气动弹性设计综述[J]. 航空学报, 2020, 41(6): 523430. LI Q Y, LI G, WEI Y T, et al. Review of aeroelasticity design for advanced fighter[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523430(in Chinese).
[5] ZONA Technology INC. ZAERO theoretical manual V9.3[M]. Scottsdale, 2019.
[6] CHEN P C. Damping perturbation method for flutter solution: the g-method[J]. AIAA Journal, 2000, 38(9): 1519-1524.
[7] 赵玲, 季辰, 刘子强. 高速颤振模型设计中颤振主要模态的判断[J]. 航空学报, 2015, 36(4): 1112-1118. ZHAO L, JI C, LIU Z Q. Judgment on main flutter mode in high-speed flutter model design[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1112-1118(in Chinese).
[8] 杨智春, 谷迎松, 夏巍. 基于矩阵奇异值理论的颤振分析新方法[J]. 航空学报, 2009, 30(6): 985-989. YANG Z C, GU Y S, XIA W. New type of flutter solution based on matrix singularity[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 985-989(in Chinese).
[9] 谷迎松, 杨智春, 王巍. 一类基于颤振行列式的颤振分析新方法[J]. 航空动力学报, 2009, 24(4): 815-818. GU Y S, YANG Z C, WANG W. New type of flutter solution based on flutter determinant[J]. Journal of Aerospace Power, 2009, 24(4): 815-818(in Chinese).
[10] 王昕江.双体飞机亚声速飞行结构动力学及颤振特性分析[D].北京: 中国航天气动力技术研究院,2019. WANG X J. Dynamic and flutter analysis of twin-fuselage aircraft in subsonic flow[D]. Beijing: China Academy of Aerospace Aerodynamics, 2019(in Chinese).
[11] 王昕江,吕计男,郭力,等. 机身刚度对双体飞机颤振的影响规律分析[J].空气动力学学报, 2021, 39(2): 104-109. WANG X J, LV J N, GUO L, et al. Aerodynamic undamping phenomena of structure oscillating in inviscid flow[J]. Acta Aerodynamica Sinica, 2021, 39(2): 104-109(in Chinese).
[12] 刘子强, 崔尔杰, 白葵, 等. 无黏流场中结构振动的气动非阻尼现象[J]. 力学学报, 2003, 35(1): 1-5. LIU Z Q, CUI E J, BAI K, et al. Aerodynamic undamping phenomena of structure oscillating in inviscid flow[J]. Acta Mechanica Sinica, 2003, 35(1): 1-5(in Chinese).
[13] 邢景棠, 周盛, 崔尔杰. 流固耦合力学概述[J]. 力学进展, 1997, 27(1): 19-38. XING J T, ZHOU S, CUI E J. A survey on the fluid solid interaction mechanics[J]. Advances in Mechanics, 1997, 27(1): 19-38(in Chinese).
[14] 杨智春,赵令诚.飞行器气动弹性力学[M]. 西安:西北工业大学出版社,2009. YANG Z C, ZHAO L C. Aeroelastic in aircraft design[M]. Xi’an: Northwestern Polytechnical University Press, 2009(in Chinese).
[15] DOWELL E H. Aeroelastic control[M]//A Modern Course in Aeroelasticity. Cham: Springer International Publishing, 2014: 531-584.
[16] 郭力.高速升力体部件颤振非结构动态网格RANS数值模拟[D].北京: 中国航天气动力技术研究院,2016. GUO L. RANS simulation of high-speed lift body control surface fluttering on dynamic unstructured meshes[D]. Beijing: China Academy of Aerospace Aerodynamics, 2016. (in Chinese).
[17] YATES E C J, LAND N S, FOUGHNER J T J. Measured and calculated subsonic and transonic flutter characteristics of a 45° sweptback wing planform in air and in freon-12 in the Langley transonic dynamic tunnel: NASA TN D-1616[R]. Washington, D.C.,: NASA, 1963.
[18] LIU F, CAI J, ZHU Y, et al. Calculation of wing flutter by a coupled fluid-structure method[J]. Journal of Aircraft, 2001, 38(2): 334-342.
[19] 宗捷.非定常气动力有理函数近似及非线性颤振研究[D].北京: 北京航空航天大学,1996. ZONG J. Rational approximation of unsteady aerodynamics and analysis of nonlinear flutter[D]. Beijing: Beihang University, 1996(in Chinese).
[20] BENDIKSEN O. A new approach to computational aeroelasticity[C]//32nd Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 1991: 939.
[21] ZHONG J Z, XU Z L. An energy method for flutter analysis of wing using one-way fluid structure coupling[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(14): 2560-2569.
文章导航

/