论文

复杂曲面铝反射镜磁流变抛光工艺优化

  • 徐超 ,
  • 胡皓 ,
  • 彭小强 ,
  • 李信磊 ,
  • 林之凡
展开
  • 1. 国防科技大学 装备综合保障技术重点实验室, 长沙 410073;
    2. 国防科技大学 智能科学学院, 长沙 410073

收稿日期: 2020-10-22

  修回日期: 2020-11-16

  网络出版日期: 2020-12-25

基金资助

国防基础科研科学挑战专题(TZ2018006);国家自然科学基金(51835013)

Optimization of magnetorheological finishing process for aluminum mirror with complex surface

  • XU Chao ,
  • HU Hao ,
  • PENG Xiaoqiang ,
  • LI Xinlei ,
  • LIN Zhifan
Expand
  • 1. Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China;
    2. College of Intelligent Science and Technology, National University of Defense Technology, Changsha 410073, China

Received date: 2020-10-22

  Revised date: 2020-11-16

  Online published: 2020-12-25

Supported by

Science Challenge Project (TZ2018006); National Natural Science Foundation of China (51835013)

摘要

采用超精密车削加工的复杂曲面铝反射镜只能满足红外光学系统的应用需求,若要满足更高需求的应用场合,需要进一步提升反射镜面形精度。磁流变抛光能够进行确定性修形,在复杂曲面加工中具有独特优势,但是复杂曲面连续变化的面形特征,在磁流变抛光时会导致去除函数不稳定,影响误差收敛效率和加工精度。从高精度复杂曲面铝反射镜的应用需求出发,提出了复杂曲面局部区域磁流变抛光去除函数的动态建模方法,给出了驻留时间求解算法,以平均曲率变化最小为原则,设计了抛光路径优化算法,针对该算法计算速度慢的问题,提出了优化策略,并通过试验进行了验证,最终加工的复杂曲面铝反射镜的面形误差为0.216λ PV、0.033λ RMS (λ=632.8 nm)。

本文引用格式

徐超 , 胡皓 , 彭小强 , 李信磊 , 林之凡 . 复杂曲面铝反射镜磁流变抛光工艺优化[J]. 航空学报, 2021 , 42(10) : 524914 -524914 . DOI: 10.7527/S1000-6893.2020.24914

Abstract

The complex curved surface aluminum mirror processed by ultra-precision turning can only meet the application requirements of the infrared optical system. To meet higher application requirements, it is necessary to further improve the shape accuracy of the reflector. Magnetorheological finishing has unique advantages in complex surface machining as it can be used for deterministic shape modification. However, the continuous change of complex surface shape will lead to instability of removal function and affect the error convergence efficiency and machining accuracy. In this paper, according to the requirements for application of the high-precision complex curved surface aluminum mirror, a dynamic modeling method of MRF removal function in local area of complex surface is proposed, and solution to the dwell time algorithm is given. Based on the principle of minimum average curvature change, a polishing path optimization algorithm is developed. To solve the problem of slow calculation speed of the algorithm, the optimization strategy is put forward. Experiments verifies that the shape error of the finally obtained complex curved surface aluminum mirror is 0.216λ PV and 0.033λ RMS (λ=632.8 nm).

参考文献

[1] TANG R R, ZHANG B Q, JIN G F, et al. Multiple surface expansion method for design of freeform imaging systems[J]. Optics Express, 2018, 26(3):2983-2994.
[2] ROHLOFF R R, GEBHARDT A, SCHÖNHERR V, et al. A novel athermal approach for high-performance cryogenic metal optics[C]//SPIE Astronomical Telescopes+Instrumentation. Proc SPIE 7739, Modern Technologies in Space-and Ground-Based Telescopes and Instrumentation, 2010, 7739:77394E.
[3] WANG C C, LIN S C, HOCHEN H. A material removal model for polishing glass-ceramic and aluminum magnesium storage disks[J]. International Journal of Machine Tools and Manufacture, 2002, 42(8):979-984.
[4] SHAFRIR S N, LAMBROPOULOS J C, JACOBS S D. A magnetorheological polishing-based approach for studying precision microground surfaces of tungsten carbides[J]. Precision Engineering, 2007, 31(2):83-93.
[5] TSUI H P, YAN B H, WU W T, et al. A study on stainless steel mirror surface polishing by using the electrophoretic deposition method[J]. International Journal of Machine Tools and Manufacture, 2007, 47(12-13):1965-1970.
[6] 张东阁, 傅雨田. 铝合金反射镜的发展与应用[J]. 红外技术, 2015, 37(10):814-823. ZHANG D G, FU Y T. Development and application of aluminum mirrors in optical system[J]. Infrared Technology, 2015, 37(10):814-823(in Chinese).
[7] 徐超, 彭小强, 戴一帆. 复杂曲面铝反射镜超精密制造现状[J]. 光电工程, 2020, 47(8):31-42. XU C, PENG X Q, DAI Y F. Current status of ultra-precision manufacturing of complex curved aluminum reflectors[J]. Opto-Electronic Engineering, 2020, 47(8):31-42(in Chinese).
[8] XIE Y J, MAO X L, LI J P, et al. Optical design and fabrication of an all-aluminum unobscured two-mirror freeform imaging telescope[J]. Applied Optics, 2020, 59(3):833.
[9] SCHAEFER J P. Advanced metal mirror processing for tactical ISR systems[C]//SPIE Defense, Security, and Sensing. Proc SPIE 8713, Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications X, 2013, 8713:871306.
[10] REVEL P, KHANFIR H, FILLIT R Y. Surface characterization of aluminum alloys after diamond turning[J]. Journal of Materials Processing Technology, 2006, 178(1-3):154-161.
[11] KIM S, CHANG S, PAK S, et al. Fabrication of electroless nickel plated aluminum freeform mirror for an infrared off-axis telescope[J]. Applied Optics, 2015, 54(34):10137-10144.
[12] HE C L, ZONG W J. Diffraction effect and its elimination method for diamond-turned optics[J]. Optics Express, 2019, 27(2):1326-1344.
[13] 邓金球. 铝合金反射镜超精密抛光关键技术研究[D]. 长沙:国防科技大学, 2017:1-71. DENG J Q. Study on the key techniques of ultra-precision polishing of aluminum alloy mirrors[D]. Changsha:National University of Defense Technology, 2017:1-71. (in Chinese)
[14] ZHAO T, HU H, PENG X Q, et al. High-precision processing method for an aluminum mirror assisted with a femtosecond laser[J]. Applied Optics, 2020, 59(27):8335-8341.
[15] 葛坤鹏, 李圣怡, 胡皓. 铝合金反射镜磁流变抛光表面质量控制的参数优化[J]. 纳米技术与精密工程, 2017, 15(2):151-157. GE K P, LI S Y, HU H. Parameters optimization of surface quality control on magnetorheological finishing for aluminum alloy mirror[J]. Nanotechnology and Precision Engineering, 2017, 15(2):151-157(in Chinese).
[16] 李圣怡, 戴一帆. 大中型光学非球面镜制造与测量新技术[M]. 北京:国防工业出版社, 2011:208-292. LI S Y, DAI Y F. New technology for manufacturing and measurement of large and middle-scale aspheric surfaces[M]. Beijing:National Defense Industry Press, 2011:208-292(in Chinese).
[17] 李信磊.复杂曲面铝反射镜磁流变抛光关键技术研究[D].长沙:国防科技大学,2019:1-51. LI X L. Research on the key technology of magnetorheological polishing of complex curved aluminum mirror[D]. Changsha:National University of Defense Technology, 2019:1-51(in Chinese).
[18] GOLINI D. Surface interactions between nano diamonds and glass in magnetorheological finishing (MRF)[D]. New York:Dissertation of University of Rochester, 2007.
[19] 杨力. 先进光学制造技术[M]. 北京:科学出版社, 2001. YANG L. Advanced optical manufacturing technology[M]. Beijing:Science Press, 2001(in Chinese).
[20] 邓伟杰, 郑立功, 史亚莉, 等. 离轴非球面数控抛光路径的自适应规划[J]. 光学精密工程, 2009, 17(1):65-71. DENG W J, ZHENG L G, SHI Y L, et al. Adaptive programming algorithm for generating polishing tool-path in computer controlled optical surfacing[J]. Optics and Precision Engineering, 2009, 17(1):65-71(in Chinese).
[21] WAN S L, ZHANG X C, XU M, et al. Region-adaptive path planning for precision optical polishing with industrial robots[J]. Optics Express, 2018, 26(18):23782-23795.
[22] 王志伟, 蔺小军, 史耀耀, 等. 基于压缩量偏差约束的整体叶盘砂布轮数控抛光路径规划[J]. 航空学报, 2020, 41(2):623330. WANG Z W, LIN X J, SHI Y Y, et al. A polishing path planning method for blisk with abrasive cloth wheel based on compression deviation constraint[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):623330(in Chinese).
[23] KINAST J, SCHLEGEL R, KLEINBAUER K, et al. Manufacturing of aluminum mirrors for cryogenic applications[C]//SPIE Astronomical Telescopes+Instrumentation. Proc SPIE 10706, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, 2018, 10706:107063G.
文章导航

/