论文

考虑进气约束的高超声速飞行器预定性能控制

  • 丁一波 ,
  • 岳晓奎 ,
  • 代洪华 ,
  • 崔乃刚
展开
  • 1. 西北工业大学 航天学院, 西安 710072;
    2. 哈尔滨工业大学 航天学院, 哈尔滨 150001

收稿日期: 2020-10-05

  修回日期: 2020-11-15

  网络出版日期: 2020-12-25

基金资助

国家自然科学基金(12102343,U2013206);上海航天科技创新基金(SAST2020-072);中央高效基本科研业务费专项资金(D5000210833)

Prescribed performance controller for flexible air-breathing hypersonic vehicle with considering inlet airflow constraint

  • DING Yibo ,
  • YUE Xiaokui ,
  • DAI Honghua ,
  • CUI Naigang
Expand
  • 1. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

Received date: 2020-10-05

  Revised date: 2020-11-15

  Online published: 2020-12-25

Supported by

National Natural Science Foundation of China (12102343, U2013206); Shanghai Space Science and Tehnology Innovation Fund (SAST2020-072); the Fundamental Research Funds for the Central Universities (D5000210833)

摘要

针对高超声速飞行器跟踪误差瞬态性能约束与发动机进气条件约束问题,提出约束预定性能控制方案。首先,设计新型设定时间性能函数用于限定跟踪误差的瞬态与稳态性能。相比传统方法,新型方案可保证性能函数在设定时刻精确收敛至稳态值,同时可灵活调整函数初始收敛速率,避免控制饱和。其次,将速度与高度受约束跟踪误差进行无约束转换,通过控制转化误差有界满足原始跟踪误差的预定性能约束。在高度子系统中,通过结合预定性能控制限定攻角变化范围,能够满足发动机进气需求。最后,以考虑参数摄动的吸气式高超声速飞行器为对象执行对比仿真,结果表明所提方法能够有效满足跟踪误差的性能约束与发动机进气约束。

本文引用格式

丁一波 , 岳晓奎 , 代洪华 , 崔乃刚 . 考虑进气约束的高超声速飞行器预定性能控制[J]. 航空学报, 2021 , 42(11) : 524838 -524838 . DOI: 10.7527/S1000-6893.2020.24838

Abstract

To solve transient performance constraints of tracking errors and inlet airflow constraint of scramjet for air-breathing hypersonic vehicle, a constrained prescribed performance controller is proposed. Firstly, a novel setting-time performance function is presented to limit the transient and steady state performance of tracking errors. Compared with traditional methods, the novel function can guarantee that the performance function converges to the steady state precisely at the setting time. Meanwhile, the initial convergence rate of the performance function can be adjusted freely. Then, velocity and height tracking errors are unconstrained via coordinate transformation. By means of controlling the errors of transformation bounded, the prescribed performance constraints of original tracking errors can be satisfied. In the height subsystem, by combining prescribed performance control to limit the range of angle of attack, the inlet airflow requirements of scramjet can be satisfied. Finally, comparative simulations on the air-breathing hypersonic vehicle with parametric uncertainties are performed to demonstrate that the method presented can effectively satisfy the performance constraints of tracking errors and inlet airflow constraint of scramjet.

参考文献

[1] 方洋旺, 柴栋, 毛东辉, 等. 吸气式高超声速飞行器制导与控制研究现状及发展趋势[J]. 航空学报, 2014, 35(7):1776-1786. FANG Y W, CHAI D, MAO D H, et al. Status and development trend of the guidance and control for air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1776-1786(in Chinese).
[2] DING Y B, WANG X G, BAI Y L, et al. Global smooth sliding mode controller for flexible air-breathing hypersonic vehicle with actuator faults[J]. Aerospace Science and Technology, 2019, 92:563-578.
[3] 王肖, 郭杰, 唐胜景, 等. 吸气式高超声速飞行器鲁棒非奇异Terminal滑模反步控制[J]. 航空学报, 2017, 38(3):320287. WANG X, GUO J, TANG S J, et al. Robust nonsingular Terminal sliding mode backstepping control for air-breathing hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):320287(in Chinese).
[4] 李静, 左斌, 段洣毅, 等. 输入受限的吸气式高超声速飞行器自适应Terminal滑模控制[J]. 航空学报, 2012, 33(2):220-233. LI J, ZUO B, DUAN M Y, et al. Adaptive terminal sliding mode control for air-breathing hypersonic vehicles under control input constraints[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2):220-233(in Chinese).
[5] DING Y B, WANG X G, BAI Y L, et al. Adaptive higher order super-twisting control algorithm for a flexible air-breathing hypersonic vehicle[J]. Acta Astronautica, 2018, 152:275-288.
[6] 郭建国, 鲁宁波, 周军. 高超声速飞行器有限时间耦合模糊控制[J]. 航空学报, 2020, 41(11):623838. GUO J G, LU N B, ZHOU J. Fuzzy control of finite time attitude coupling in hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):623838(in Chinese).
[7] 申玉叶. 高超声速飞行器机理建模及特性分析[D]. 天津:天津大学, 2014:12-28. SHEN Y Y. Modeling and characteristic analysis of hypersonic vehicle[D]. Tianjin:Tianjin University, 2014:12-28(in Chinese).
[8] SHAUGHNESSY J D, PINCKNEY S Z, MCMINN J D, et al. Hypersonic vehicle simulation model:Winged-cone configuration:NASA-TM-102610[R]. Washington, D.C.:NASA, 1990.
[9] CLARK A, WU C, MIRMIRANI M, et al. Development of an airframe-propulsion integrated hypersonic vehicle model:AIAA-2006-0218[R]. Reston:AIAA, 2006.
[10] CHAVEZ F R, SCHMIDT D K. Analytical aeropropulsive/aeroelastic hypersonic-vehicle model with dynamic analysis[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(6):1308-1319.
[11] BOLENDER M A. An overview on dynamics and controls modelling of hypersonic vehicles[C]//2009 American Control Conference. Piscataway:IEEE Press, 2009:2507-2512.
[12] BOLENDER M A, DOMAN D B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle[J]. Journal of Spacecraft and Rockets, 2007, 44(2):374-387.
[13] BOLENDER M, DOMAN D. A non-linear model for the longitudinal dynamics of a hypersonic air-breathing vehicle:AIAA-2005-6255[R]. Reston:AIAA, 2005.
[14] MIRMIRANI M, WU C, CLARK A, et al. Modeling for control of a generic airbreathing hypersonic vehicle:AIAA-2005-6256[R]. Reston:AIAA, 2005.
[15] MORELLI E, DERRY S, SMITH M. Aerodynamic parameter estimation for the X-43A (Hyper-X) from flight data:AIAA-2005-5921[R]. Reston:AIAA, 2005.
[16] ENGELUND W C. Hyper-X aerodynamics:The X-43A airframe-integrated scramjet propulsion flight-test experiments[J]. Journal of Spacecraft and Rockets, 2001, 38(6):801-802.
[17] PARKER J T, SERRANI A, YURKOVICH S, et al. Control-oriented modeling of an air-breathing hypersonic vehicle[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3):856-869.
[18] SIGTHORSSON D, SERRANI A. Development of linear parameter-varying models of hypersonic air-breathing vehicles:AIAA-2009-6282[R]. Reston:AIAA, 2009.
[19] OPPENHEIMER M, DOMAN D. A hypersonic vehicle model developed with piston theory:AIAA-2006-6637[R]. Reston:AIAA, 2006.
[20] OPPENHEIMER M, SKUJINS T, BOLENDER M, et al. A flexible hypersonic vehicle model developed with piston theory:AIAA-2007-6396[R]. Reston:AIAA, 2007.
[21] OPPENHEIMER M, DOMAN D, MCNAMARA J, et al. Viscous effects for a hypersonic vehicle model:AIAA-2008-6382[R]. Reston:AIAA, 2008.
[22] BOLENDER M, OPPENHEIMER M, DOMAN D. Effects of unsteady and viscous aerodynamics on the dynamics of a flexible air-breathing hypersonic vehicle:AIAA-2007-6397[R]. Reston:AIAA, 2007.
[23] WILLIAMS T, BOLENDER M, DOMAN D, et al. An aerothermal flexible mode analysis of a hypersonic vehicle:AIAA-2006-6647[R]. Reston:AIAA, 2006.
[24] UR REHMAN O, PETERSEN I R, FIDAN B. Feedback linearization-based robust nonlinear control design for hypersonic flight vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2013, 227(1):3-11.
[25] BU X W, WU X Y, HUANG J Q, et al. Minimal-learning-parameter based simplified adaptive neural back-stepping control of flexible air-breathing hypersonic vehicles without virtual controllers[J]. Neurocomputing, 2016, 175:816-825.
[26] BU X W, WU X Y, ZHANG R, et al. A neural approximation-based novel back-stepping control scheme for air-breathing hypersonic vehicles with uncertain parameters[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2016, 230(3):231-243.
[27] LEVANT A. Quasi-continuous high-order sliding-mode controllers[J]. IEEE Transactions on Automatic Control, 2005, 50(11):1812-1816.
[28] ZHANG Y Y, LI R F, XUE T, et al. An analysis of the stability and chattering reduction of high-order sliding mode tracking control for a hypersonic vehicle[J]. Information Sciences, 2016, 348:25-48.
[29] 李亚苹, 王芳, 周超. 全状态受限的高超声速飞行器的预定性能滤波反步控制[J]. 航空学报, 2020, 41(11):623857. LI Y P, WANG F, ZHOU C. Prescribed performance filter backstepping control of hypersonic vehicle with full state constraints[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):623857(in Chinese).
[30] 骆长鑫, 张东洋, 雷虎民, 等. 输入受限的高超声速飞行器鲁棒反演控制[J]. 航空学报, 2018, 39(4):321801. LUO C X, ZHANG D Y, LEI H M, et al. Robust backstepping control of input-constrained hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):321801(in Chinese).
[31] WANG S B, CHEN Q, REN X M, et al. Neural network-based adaptive funnel sliding mode control for servo mechanisms with friction compensation[J]. Neurocomputing, 2020, 377:16-26.
[32] DONG C Y, LIU Y, WANG Q. Barrier Lyapunov function based adaptive finite-time control for hypersonic flight vehicles with state constraints[J]. ISA Transactions, 2020, 96:163-176.
[33] BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9):2090-2099.
[34] BU X W. Guaranteeing prescribed performance for air-breathing hypersonic vehicles via an adaptive non-affine tracking controller[J]. Acta Astronautica, 2018, 151:368-379.
[35] BU X W, WU X Y, ZHU F J, et al. Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors[J]. ISA Transactions, 2015, 59:149-159.
[36] ZHAO S Y, LI X B, BU X W, et al. Prescribed performance tracking control for hypersonic flight vehicles with model uncertainties[J]. International Journal of Aerospace Engineering, 2019, 2019:3505614.
[37] LIU Y, LIU X P, JING Y W. Adaptive fuzzy finite-time stability of uncertain nonlinear systems based on prescribed performance[J]. Fuzzy Sets and Systems, 2019, 374:23-39.
[38] FIORENTINI L, SERRANI A, BOLENDER M A, et al. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2):402-417.
[39] DING Y B, WANG X G, BAI Y L, et al. An improved continuous sliding mode controller for flexible air-breathing hypersonic vehicle[J]. International Journal of Robust and Nonlinear Control, 2020, 30(14):5751-5772.
[40] 闫杰, 于云峰, 凡永华, 等. 吸气式高超声速飞行器控制技术[M]. 西安:西北工业大学出版社, 2015. YAN J, YU Y F, FAN Y H. Control technology of air-breathing hypersonic vehicle[M]. Xi'an:Northwestern Polytechnical University Press, 2015(in Chinese).
[41] 安昊. 吸气式高超声速飞行器控制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2017:81-82. AN H. Research on control methods of air-breathing hypersonic vehicles[D]. Harbin:Harbin Institute of Technology, 2017:81-82(in Chinese).
[42] SERRANI A, BOLENDER M A. Addressing limits of operability of the scramjet engine in adaptive control of a generic hypersonic vehicle[C]//2016 IEEE 55th Conference on Decision and Control (CDC). Piscataway:IEEE Press, 2016:7567-7572.
[43] GUO Y Y, XU B, HU X X, et al. Two controller designs of hypersonic flight vehicle under actuator dynamics and AOA constraint[J]. Aerospace Science and Technology, 2018, 80:11-19.
[44] WU Z H, LU J C, SHI J P, et al. Tracking error constrained robust adaptive neural prescribed performance control for flexible hypersonic flight vehicle[J]. International Journal of Advanced Robotic Systems, 2017, 14(1):1-16.
[45] BU X W, WU X Y, HUANG J Q, et al. A guaranteed transient performance-based adaptive neural control scheme with low-complexity computation for flexible air-breathing hypersonic vehicles[J]. Nonlinear Dynamics, 2016, 84(4):2175-2194.
[46] ZHU G Q, SUN L F, ZHANG X Y. Neural networks approximator based robust adaptive controller design of hypersonic flight vehicles systems coupled with stochastic disturbance and dynamic uncertainties[J]. Mathematical Problems in Engineering, 2017, 2017:7864375.
[47] BU X W. Guaranteeing prescribed output tracking performance for air-breathing hypersonic vehicles via non-affine back-stepping control design[J]. Nonlinear Dynamics, 2018, 91(1):525-538.
[48] DING Y B, WANG X G, BAI Y L, et al. Robust fixed-time sliding mode controller for flexible air-breathing hypersonic vehicle[J]. ISA Transactions, 2019, 90:1-18.
[49] LIU J X, AN H, GAO Y B, et al. Adaptive control of hypersonic flight vehicles with limited angle-of-attack[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(2):883-894.
[50] 肖地波, 陆宇平, 刘燕斌, 等. 应用保护映射理论的高超声速飞行器自适应控制律设计[J]. 航空学报, 2015, 36(10):3327-3337. XIAO D B, LU Y P, LIU Y B, et al. Adaptive control law design using guardian maps theory for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3327-3337(in Chinese).
[51] DING Y B, WANG X G, BAI Y L, et al. Novel anti-saturation robust controller for flexible air-breathing hypersonic vehicle with actuator constraints[J]. ISA Transactions, 2020, 99:95-109.
文章导航

/