综述

飞行器共形天线新型制造工艺及应用研究进展

  • 史则颖 ,
  • 叶冬 ,
  • 彭子寒 ,
  • 谢寒 ,
  • 王洪扬 ,
  • 蒋宇 ,
  • 黄永安
展开
  • 华中科技大学 机械科学与工程学院 数字制造装备与技术国家重点实验室, 武汉 430074

收稿日期: 2020-09-29

  修回日期: 2020-11-10

  网络出版日期: 2020-12-25

基金资助

国家自然科学基金(51635007,51705179)

Research progress on novel manufacturing approaches of conformal antenna for aircraft

  • SHI Zeying ,
  • YE Dong ,
  • PENG Zihan ,
  • XIE Han ,
  • WANG Hongyang ,
  • JIANG Yu ,
  • HUANG Yongan
Expand
  • State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2020-09-29

  Revised date: 2020-11-10

  Online published: 2020-12-25

Supported by

National Natural Science Foundation of China (51635007, 51705179)

摘要

共形天线具有小型化、低剖面、大孔径等特点,是未来天线重点发展趋势之一,以气动一体化天线、超宽带窄波束天线为代表的共形天线成为目前飞行器天线领域的研究热点。当前共形天线的制作工艺主要包括打印、转印、激光加工等,采用合适的工艺能够实现天线的大面积共形制造。讨论了共形天线在不同飞行器载体上的优势,如打印制作的低剖面机载天线可实现战机的气动隐身一体化需求,也可满足弹载天线小型超宽带需求,柔性天线可应用于星载充气可展开天线等。在此基础上对当前共形天线存在的关键技术问题进行了阐述,并对共形天线在航空航天领域的未来发展做出了展望。

本文引用格式

史则颖 , 叶冬 , 彭子寒 , 谢寒 , 王洪扬 , 蒋宇 , 黄永安 . 飞行器共形天线新型制造工艺及应用研究进展[J]. 航空学报, 2021 , 42(10) : 524812 -524812 . DOI: 10.7527/S1000-6893.2020.24812

Abstract

Conformal antennas have the characteristics of miniaturization, low profile, large antenna aperture, etc., and are one of the key development trends of future antennas. The conformal antennas represented by pneumatic integrated antennas and ultra-wideband narrow beam antennas have become current research hotspots in the field of aircraft antennas. Current manufacturing processes of conformal antennas mainly include printing, transfer printing, laser processing, etc., and large-area conformal manufacturing of antennas can be achieved by using appropriate processes. This review discusses the advantages of conformal antennas on different aircraft carriers. For example, printed low-profile airborne antennas can realize the requirement for aerodynamic-stealth integration of fighter aircraft, and can also meet the needs for small ultra-wideband antennas. Flexible antennas can be applied for inflatable and deployable antennas in satellites. The key technical problems of the current conformal antennas are explained, and future development of the conformal antennas in the aerospace field is also discussed.

参考文献

[1] LI R L, NIU Z Y, LIN R S. A novel method for the RCS reduction of conformal microstrip antenna[C]//Proceedings of 2011 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference. Piscataway:IEEE Press, 2011:516-519.
[2] 杨波, 赵培林, 蔡三军, 等. 新一代战斗机座舱盖关键技术与设计方案[J]. 航空学报, 2020, 41(6):523465. YANG B, ZHAO P L, CAI S J, et al. Key technologies and design of new generation fighter canopy[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):523465(in Chinese).
[3] 叶杰, 刘志慧. 机载预警雷达共形阵应用技术分析[J]. 现代雷达, 2009, 31(7):8-11. YE J, LIU Z H. Analysis of application of AEW radar with conformal array[J]. Modern Radar, 2009, 31(7):8-11(in Chinese).
[4] CHIREIX H. Antennes à rayonnement zénithal réduit[J]. L'Onde Electrique, 1936, 15:440-445.
[5] GETHING P J D. High-frequency direction finding[J]. Proceedings of the Institution of Electrical Engineers, 1966, 113(1):49-61.
[6] KNOTT P. Design of a triple patch antenna element for double curved conformal antenna arrays[C]//2006 First European Conference on Antennas and Propagation. Piscataway:IEEE Press, 2006:1-4.
[7] KNOTT P. Antenna design and beamforming for a conformal antenna array demonstrator[C]//2006 IEEE Aerospace Conference. Piscataway:IEEE Press, 2006:7.
[8] 邹火儿, 韩国栋. 机载低剖面卫通天线的发展与未来[J]. 现代雷达, 2014, 36(3):53-56, 61. ZOU H E, HAN G D. Development and future of low profiled airborne antenna for satellite communication[J]. Modern Radar, 2014, 36(3):53-56, 61(in Chinese).
[9] 尹周平, 黄永安, 布宁斌, 等. 柔性电子喷印制造:材料、工艺和设备[J]. 科学通报, 2010, 55(25):2487-2509. YIN Z P, HUANG Y A, BU N B, et al. Inkjet printing for flexible electronics:Materials, processes and equipments[J].Chinese Science Bulletin, 2010, 55(25):2487-2509(in Chinese).
[10] ZHU J H, ZHOU H, WANG C, et al. A review of topology optimization for additive manufacturing:Status and challenges[J]. Chinese Journal of Aeronautics, 2021, 34(1):91-110.
[11] GAO Y X, LIU R, WANG X P, et al. Flexible RFID tag inductor printed by liquid metal ink printer and its characterization[J]. Journal of Electronic Packaging, 2016, 138(3):031007.
[12] PARK Y G, AN H S, KIM J Y, et al. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures[J]. Science Advances, 2019, 5(6):eaaw2844.
[13] PARK Y G, MIN H, KIM H, et al. Three-dimensional, high-resolution printing of carbon nanotube/liquid metal composites with mechanical and electrical reinforcement[J]. Nano Letters, 2019, 19(8):4866-4872.
[14] ADAMS J J, DUOSS E B, MALKOWSKI T F, et al. Conformal printing of electrically small antennas on three-dimensional surfaces[J]. Advanced Materials, 2011, 23(11):1335-1340.
[15] WANG C, LI P, REN Z M, et al. Effect and experiment of curvature radius of 3-D printed conformal load-bearing antenna array on EM performance[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30(4):e22130.
[16] SHIN D, CHOI S, KIM J, et al. Direct-printing of functional nanofibers on 3D surfaces using self-aligning nanojet in near-field electrospinning[J]. Advanced Materials Technologies, 2020, 5(6):2000232.
[17] SUBBARAMAN H, PHAM D T, XU X C, et al. Inkjet-printed two-dimensional phased-array antenna on a flexible substrate[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12:170-173.
[18] LI Z, HUANG J, YANG Y P, et al. Additive manufacturing of conformal microstrip antenna using piezoelectric nozzle array[J]. Applied Sciences, 2020, 10(9):3082.
[19] 董必扬. 电流体动力喷印的图形解析与共形制造应用[D]. 武汉:华中科技大学, 2017:49-54. DONG B Y. Graphical analysis and conformal manufacturing application of electrohydrodynamic printing[D]. Wuhan:Huazhong University of Science and Technology, 2017:49-54(in Chinese).
[20] BLUMENTHAL T, FRATELLO V, NINO G, et al. Conformal printing of sensors on 3D and flexible surfaces using aerosol jet deposition[C]//SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring, 2013.
[21] PAULSEN J A, RENN M, CHRISTENSON K, et al. Printing conformal electronics on 3D structures with Aerosol Jet technology[C]//2012 Future of Instrumentation International Workshop (FIIW) Proceedings. Piscataway:IEEE Press, 2012:1-4.
[22] LANGFORD N, SHINA S. Using conformal printed electronics for 3D printed antenna systems building blocks[C]//2019 Pan Pacific Microelectronics Symposium (Pan Pacific). Piscataway:IEEE Press, 2019:1-16.
[23] 黄银, 李海成, 陈颖, 等. 可延展柔性光子/电子集成器件及转印技术[J]. 中国科学:物理学力学天文学, 2016, 46(4):61-74. HUANG Y, LI H C, CHEN Y, et al. Stretchable and flexible photonics/electronics devices and transfer printing[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2016, 46(4):61-74(in Chinese).
[24] YOON J, LEE S M, KANG D, et al. Heterogeneously integrated optoelectronic devices enabled by micro-transfer printing[J]. Advanced Optical Materials, 2015, 3(10):1313-1335.
[25] AHN J H, KIM H S, LEE K J, et al. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials[J]. Science, 2006, 314(5806):1754-1757.
[26] SAEIDPOURAZAR R, SANGID M D, ROGERS J A, et al. A prototype printer for laser driven micro-transfer printing[J]. Journal of Manufacturing Processes, 2012, 14(4):416-424.
[27] 杨思慧. 柔性电子曲面共形变形机理与相似度判别准则[D]. 武汉:华中科技大学, 2018:1-23. YANG S H. Mechanism analysis of flexible electronics' curved conformal deformation process and similarity comparison criterion[D]. Wuhan:Huazhong University of Science and Technology, 2018:1-23(in Chinese).
[28] SAADA G, LAYANI M, CHERNEVOUSKY A, et al. Hydroprinting conductive patterns onto 3D structures[J]. Advanced Materials Technologies, 2017, 2(5):1600289.
[29] LE BORGNE B, DE SAGAZAN O, CRAND S, et al. Conformal electronics wrapped around daily life objects using an original method:Water transfer printing[J]. ACS Applied Materials & Interfaces, 2017, 9(35):29424-29429.
[30] WU H Y, CHIANG S W, YANG C, et al. Conformal pad-printing electrically conductive composites onto thermoplastic hemispheres:Toward sustainable fabrication of 3-cents volumetric electrically small antennas[J]. PLoS One, 2015, 10(8):e0136939.
[31] KIM B S, SHIN K Y, PYO J B, et al. Reversibly stretchable, optically transparent radio-frequency antennas based on wavy Ag nanowire networks[J]. ACS Applied Materials & Interfaces, 2016, 8(4):2582-2590.
[32] KIM Y S, BASIR A, HERBERT R, et al. Soft materials, stretchable mechanics, and optimized designs for body-wearable compliant antennas[J]. ACS Applied Materials & Interfaces, 2020, 12(2):3059-3067.
[33] PURVIS A, MCWILLIAM R, JOHNSON S, et al. Photolithographic patterning of bihelical tracks onto conical substrates[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2007, 6(4):043015.
[34] JOBS M, HJORT K, RYDBERG A, et al. A tunable spherical cap microfluidic electrically small antenna[J]. Small, 2013, 9(19):3230-3234.
[35] HUANG Y, WANG Y Z, XIAO L, et al. Microfluidic serpentine antennas with designed mechanical tunability[J]. Lab Chip, 2014, 14(21):4205-4212.
[36] 胡建强, 李鹏, 戴福洪. 丝网印刷柔性薄膜天线力电性能表征[J]. 哈尔滨工业大学学报, 2018, 50(5):18-23. HU J Q, LI P, DAI F H. Mechanical and electric performance characterization of screen printed flexible membrane antennas[J]. Journal of Harbin Institute of Technology, 2018, 50(5):18-23(in Chinese).
[37] HUANG Y, WU H, XIAO L, et al. Assembly and applications of 3D conformal electronics on curvilinear surfaces[J]. Materials Horizons, 2019, 6(4):642-683.
[38] YANG J U, CHO J H, YOO M J. Selective metallization on copper aluminate composite via laser direct structuring technology[J]. Composites Part B:Engineering, 2017, 110:361-367.
[39] HU C F, LI N J, CHEN W J, et al. High-precision RCS measurement of aircraft's weak scattering source[J]. Chinese Journal of Aeronautics, 2016, 29(3):772-778.
[40] 王耀华. 关于机载预警侦察无人机共形天线的研究[J]. 数字通信世界, 2019(3):59. WANG Y H. Research on conformal antenna of airborne early warning reconnaissance UAV[J].Digital Communication World, 2019(3):59(in Chinese).
[41] 沈威宇, 陈国虎, 张广求, 等. 一种应用于无人机的水平全向共形环天线设计[J]. 信息工程大学学报, 2018, 19(3):327-330. SHEN W Y, CHEN G H, ZHANG G Q, et al. Design of wideband conformal horizontal omnidirectional loop antenna for unmanned aerial vehicle[J]. Journal of Information Engineering University, 2018, 19(3):327-330(in Chinese).
[42] 辛荣提, 沈亮, 冷智辉, 等. 结构一体化天线发展及其应用[C]//第五届中国无人机大会论文集. 北京:航空工业出版社, 2014:190-195. XIN R T, SHEN L, LENG Z H, et al. Development and application of structure integrated antenna[C]//Proceedings of the 5th China UAV Conference. Beijing:Aviation Industry Press, 2014:190-195(in Chinese).
[43] 马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3):623418. MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):623418(in Chinese).
[44] 许鸣, 王开华, 王克选, 等. 一种新型宽波束低剖面无人机载共形天线[J]. 电讯技术, 2013, 53(4):488-492. XU M, WANG K H, WANG K X, et al. A novel wide beamwidth conformal antenna on unmanned aerial vehicle[J]. Telecommunication Engineering, 2013, 53(4):488-492(in Chinese).
[45] PATROVSKY A, SEKORA R. Structural integration of a thin conformal annular slot antenna for UAV applications[C]//2010 Loughborough Antennas & Propagation Conference. Piscataway:IEEE Press, 2010:229-232.
[46] JAECK V, BERNARD L, MAHDJOUBI K, et al. Design and manufacturing of conformal antenna array on a conical surface at 5.2 GHz[C]//201747th European Microwave Conference (EuMC). Piscataway:IEEE Press, 2017:1207-1210.
[47] ZHOU J Z, LI H T, KANG L, et al. Design, fabrication, and testing of active skin antenna with 3D printing array framework[J]. International Journal of Antennas and Propagation, 2017, 2017:7516323.
[48] ZHANG J J, WANG J H, CHEN M E, et al. RCS reduction of patch array antenna by electromagnetic band-gap structure[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11:1048-1051.
[49] 贺友龙, 郝汀, 梁洪灿, 等. 超宽带弹载共形天线设计[J]. 舰船电子对抗, 2020, 43(3):89-92. HE Y L, HAO T, LIANG H C, et al. Design of UWB missile-borne conformal antenna[J]. Shipboard Electronic Countermeasure, 2020, 43(3):89-92(in Chinese).
[50] 李得东. 若干小型化宽带共形天线设计[D]. 西安:西安电子科技大学, 2018:1-14. LI D D. Some miniaturized broadband conformal antennas design[D]. Xi'an:Xidian University, 2018:1-14(in Chinese).
[51] MOHAMADZADE B, SIMORANGKIR R B V B, HASHMI R M, et al. A conformal ultrawideband antenna with monopole-like radiation patterns[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(8):6383-6388.
[52] 易克初, 李怡, 孙晨华, 等. 卫星通信的近期发展与前景展望[J]. 通信学报, 2015, 36(6):161-176. YI K C, LI Y, SUN C H, et al. Recent development and its prospect of satellite communications[J]. Journal on Communications, 2015, 36(6):161-176(in Chinese).
[53] 王从思, 韩如冰, 王伟, 等. 星载可展开有源相控阵天线结构的研究进展[J]. 机械工程学报, 2016, 52(5):107-123. WANG C S, HAN R B, WANG W, et al. Development of spaceborne deployable active phased array antennas[J]. Journal of Mechanical Engineering, 2016, 52(5):107-123(in Chinese).
[54] 陈传志, 董家宇, 陈金宝, 等. 空间大型星载抛物面天线研究进展[J]. 航空学报, 2021, 42(1):523833. CHEN C Z, DONG J Y, CHEN J B, et al. Large spaceborne parabolic antenna:Researchp progress[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1):523833(in Chinese).
[55] 陈国辉, 王波, 华岳, 等. 嫦娥四号中继星伞状可展开天线关键技术研究[J]. 中国科学:技术科学, 2019, 49(2):166-174. CHEN G H, WANG B, HUA Y, et al. The key technologies for radial rib deployable antenna of Chang'e-4 relay satellite[J]. Scientia Sinica (Technologica), 2019, 49(2):166-174(in Chinese).
[56] LIU Z Q, QIU H, LI X, et al. Review of large spacecraft deployable membrane antenna structures[J]. Chinese Journal of Mechanical Engineering, 2017, 30(6):1447-1459.
[57] GASPAR J, MANN T, SREEKANTAMURTHY T, et al. Structural test and analysis of a hybrid inflatable antenna:AIAA-2007-1832[R]. Reston:AIAA, 2007.
[58] BABUSCIA A, VAN DE LOO M, WEI Q J, et al. Inflatable antenna for cubesat:Fabrication, deployment and results of experimental tests[C]//2014 IEEE Aerospace Conference. Piscataway:IEEE Press, 2014:1-12.
[59] 张幸运, 任武, 李伟明. 可重构天线的发展概述[C]//2015年全国微波毫米波会议论文集, 2015:1889-1892. ZHANG X Y, REN W, LI W M. The development of reconfigurable antenna[C]//Proceedings of 2015 National Conference on Microwave and Millimeter Waves, 2015:1889-1892(in Chinese).
[60] NIROO-JAZI M, DENIDNI T A. Electronically sweeping-beam antenna using a new cylindrical frequency-selective surface[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(2):666-676.
[61] SARASWAT K, HARISH A R. Flexible dual-band dual-polarised CPW-fed monopole antenna with discrete-frequency reconfigurability[J]. IET Microwaves, Antennas & Propagation, 2019, 13(12):2053-2060.
[62] 林建成. 频率可重构天线的研制[D]. 成都:电子科技大学, 2015:1-10. LIN J C. Research on the frequency reconfigurable antenna[D]. Chengdu:University of Electronic Science and Technology of China, 2015:1-10(in Chinese).
[63] AMRAM BENGIO E, SENIC D, TAYLOR L W, et al. Carbon nanotube thin film patch antennas for wireless communications[J]. Applied Physics Letters, 2019, 114(20):203102.
[64] ILCEV S D. Global mobile satellite communications applications[M]. Berlin:Springer, 2018.
[65] 刘玉敬. 基于超材料的阵列天线去耦合及有源超材料研究[D]. 哈尔滨:哈尔滨工程大学, 2016:1-7. LIU Y J. Research on metamaterial-based decoupling of antenna arrays and active metamaterials[D]. Harbin:Harbin Engineering University, 2016:1-7(in Chinese).
[66] CHAUVET F, GUINVARC'H R, HÉIER M. Approximated method neglecting coupling for conformal antenna[J]. Applied Computational Electromagnetics Society Journal, 2007, 22(1):105-111.
[67] CHANEY R L, HACKLER D R, WILSON D G, et al., Advanced conformal load-bearing antenna structures[C]//2013 Government Microcircuit Applications and Critical Technology Conference, 2013.
[68] 杨鹏. 基于复杂载体的共形软件天线关键技术研究[D]. 成都:电子科技大学, 2012:10-21. YANG P. Study of key techniques of conformal software antenna based on complex platforms[D]. Chengdu:University of Electronic Science and Technology of China, 2012:10-21(in Chinese).
[69] 何明. 自适应共形阵列天线的研究与分析[D]. 成都:电子科技大学, 2009:36-59. HE M. Research and analysis of adaptive conformal array antenna[D]. Chengdu:University of Electronic Science and Technology of China, 2009:36-59.
[70] 刘元柱, 肖绍球, 唐明春, 等. 共形天线分析综合方法研究进展[J]. 航空兵器, 2011, 18(5):13-18. LIU Y Z, XIAO S Q, TANG M C, et al. Development of the method of analysis and synthesis for conformal antenna[J]. Aero Weaponry, 2011, 18(5):13-18(in Chinese).
[71] LOU Z, JIN J M. Finite-element analysis of phased-array antennas[J]. Microwave and Optical Technology Letters, 2004, 40(6):490-496.
[72] ZHAO W J, LI L W, LI E P, et al. Analysis of radiation characteristics of conformal microstrip arrays using adaptive integral method[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2):1176-1181.
[73] OUYANG J, ZHANG J, ZHI ZHANG K, et al. Analysis and synthesis of conformal conical surface linear phased array with volume surface integral equation+AEP (Active Element Pattern) and INSGA-II[J]. IET Microwaves, Antennas & Propagation, 2012, 6(11):1277-1285.
[74] 许群, 王云香, 刘少斌, 等. 飞行器共形天线技术综述[J]. 现代雷达, 2015, 37(9):50-54. XU Q, WANG Y X, LIU S B, et al. An overview on conformal antenna technology for aircraft[J]. Modern Radar, 2015, 37(9):50-54(in Chinese).
[75] LIU J P, XIAO L, RAO Z F, et al. High-performance, micrometer thick/conformal, transparent metal-network electrodes for flexible and curved electronic devices[J]. Advanced Materials Technologies, 2018, 3(8):1800155.
[76] PENG J, CHEN B L, WANG Z C, et al. Surface coordination layer passivates oxidation of copper[J]. Nature, 2020, 586(7829):390-394.
[77] 庞博, 胡小光, 王泽龙, 等. 转印技术及其在柔性电子中的应用[J]. 机电工程技术, 2019, 48(10):145-149. PANG B, HU X G, WANG Z L, et al. Transfer printing and its applications in flexible electronics[J]. Mechanical & Electrical Engineering Technology, 2019, 48(10):145-149(in Chinese).
[78] LEE D Y, HINES D R, STAFFORD C M, et al. Low-temperature plasma-assisted nanotransfer printing between thermoplastic polymers[J]. Advanced Materials, 2009, 21(24):2524-2529.
[79] YIM K H, ZHENG Z J, LIANG Z Q, et al. Efficient conjugated-polymer optoelectronic devices fabricated by thin-film transfer-printing technique[J]. Advanced Functional Materials, 2008, 18(7):1012-1019.
[80] LEISTEN O, FIERET J, BOEHLEN I S, et al. Laser-assisted manufacture for performance-optimized dielectrically loaded GPS antennas for mobile telephones[J]. Proceedings of SPIE, 2002, 4637:397-403.
[81] 江树镇, 郭钟宁, 郑文书, 等. 生物芯片微流道的微细加工工艺[J]. 电加工与模具, 2014(3):66-70. JIANG S Z, GUO Z N, ZHENG W S, et al. The micro machining processes of microchannels on biochips[J]. Electromachining & Mould, 2014(3):66-70(in Chinese).
[82] 艾骏. 高效率曲面激光直写光刻关键技术研究[D]. 武汉:华中科技大学, 2018:2-10. AI J. Study on key technologies of high-efficiency laser direct writing lithography on curved surfaces[D]. Wuhan:Huazhong University of Science and Technology, 2018:2-10(in Chinese).
[83] 徐晨, 郝金杰. 飞行器天线的发展与应用[J]. 电子世界, 2016(14):15. XU C, HAO J J. Development and application of aircraft antennas[J]. Electronics World, 2016(14):15(in Chinese).
[84] 胡志慧, 姜永华, 凌祥, 等. 共形天线技术及其在导引头中的应用[J]. 飞航导弹, 2012(11):77-81. HU Z H, JIANG Y H, LING X, et al. Conformal antenna technology and its application in seeker[J]. Aerodynamic Missile Journal, 2012(11):77-81(in Chinese).
[85] ENKRICH C, WEGENER M, LINDEN S, et al. Magnetic metamaterials at telecommunication and visible frequencies[J]. Physical Review Letters, 2005, 95(20):203901.
[86] 杜文豪. 共形阵列天线形变的影响分析与补偿研究[D]. 西安:西安电子科技大学, 2017:1-5. DU W H. Study on the deformation analysis and compensation of conformal array antennas[D]. Xi'an:Xidian University, 2017:1-5(in Chinese).
文章导航

/