最优阻尼复合结构应该是阻尼材料自身的材料性能和阻尼材料在板壳结构上的分布形态均是最优的。针对板壳阻尼复合结构的多尺度设计问题,建立了基于非比例阻尼模型的复合结构多尺度拓扑优化方法,实现了阻尼材料在宏微观两尺度上的协同设计,同时获得最优的阻尼材料宏观分布形态和微观构型。以结构模态阻尼比为目标,分别研究了复合结构的单目标和多目标多尺度设计问题。结果表明,在单目标设计中,当最大化结构的某一阶模态阻尼比时,优化后结构的该阶模态阻尼比最大,同时结构在该阶处的频率响应最小;在多目标设计中,以结构前3阶模态阻尼比之和为目标,虽然在每一阶处的性能劣于单目标设计结果,但是结构前3阶模态阻尼比的总体性能更优。同时,从微结构的构型可得,最优的微结构构型中低刚度高阻尼材料的分布相互连接,其损失模量(微结构复弹性矩阵的虚部)和阻尼因子(微结构复弹性矩阵的虚部与实部之比)都相对较高,且呈现负泊松比现象。优化后复合结构的动力学性能显著提高。
For the purpose of reducing vibration of thin-walled structures, the use of damping material is one of the most effective and robust approaches. Damping performance of the thin-walled damping composite structures mainly depends on the damping material layout and its material physical properties. This paper proposes a concurrent topology optimization method for the design of the thin-walled damping composite structures based on non-proportional damping model. In this method, both the microstructural configurations and their macroscopic distribution are optimized in an integrated manner. In order to maximize the structural damping performance, the single-objective and multi-objective concurrent topology optimization problem are studied. The results show that, for the single objective design, when the k-th modal loss factor is set to be the objective function, the damping at k-th Eigen mode is maximum and the amplitude of frequency response function at the k-th natural frequency is minimum. However, the multi objective design obtains a better equilibrium in the lowest 3 modes and shows good vibration performance in the 1-3 modes. From the microstructure layout, it can be found that the optimal microstructure has relatively great loss moduli and high material loss factor, and it also presents a negative Poisson’s ratio. The structural vibration performance of the optimal composite structure is significantly improved.
[1] 黄志诚, 秦朝烨, 褚福磊. 附加粘弹阻尼层的薄壁构件振动问题研究综述[J]. 振动与冲击, 2014, 33(7):105-113. HUANG Z C, QIN Z Y, CHU F L. A review about vibration problems of thin-walled structures with viscoelastic damping layer[J]. Journal of Vibration and Shock, 2014, 33(7):105-113.
[2] KANG Z, ZHANG X P, JIANG S G, et al. On topology optimization of damping layer in shell structures under harmonic excitations[J]. Structural and Multidisciplinary Optimization, 2012, 46:51-67.
[3] KIM S Y, CHRIS K M, KIM I Y. Optimal damping layout in a shell structure using topology optimization[J]. Journal of Sound and Vibration, 2013, 332:2873-2883.
[4] YAMAMOTO T, YAMADA T, IZUI K S, et al. Topology optimization of free-layer damping material on a thin panel for maximizing modal loss factors expressed by only real eigenvalues[J]. Journal of Sound and Vibration, 2015, 358:84-96.
[5] 郑玲, 谢熔炉, 王宜, 等. 基于优化准则的约束阻尼材料优化配置[J]. 振动与冲击, 2010, 29(11):156-159. ZHENG L, XIE R L, WANG Y, et al. Optimal placement of constrained damping material in structures based on optimality criteria[J]. Journal of Vibration and Shock, 2010, 29(11):156-159.
[6] TAKEZAWA A, DAIFUKU M, NAKANO Y, et al. Topology optimization of damping material for reducing resonance response based on complex dynamic compliance[J]. Journal of Sound and Vibration, 2015, 358:84-96.
[7] EI-SABBAGH A, BAZ A. Topology optimization of unconstrained damping treatments for plates[J]. Engineering Optimization, 2014, 46(9):1153-1168.
[8] ZHANG X P, KANG Z. Vibration suppression using integrated topology optimization of host structures and damping layers[J]. Journal of Vibration and Control. 2016, 22(1):66-76.
[9] YUN K S, YOUN S K. Topology optimization of viscoelastic damping layers for attenuating transient response of shell structures[J]. Finite Elements in Analysis & Design, 2018, 141:154-165.
[10] YUN K S, YOUN S K. Multi-material topology optimization of viscoelastically damped structures under time-dependent loading[J]. Finite Elements in Analysis & Design, 2017, 123:9-18.
[11] YI Y M, PARK S H, YOUN S K. Asymptotic homogenization of viscoelastic composites with periodic microstructures[J]. International Journal of Solids and Structures, 1998, 35(17):2039-2055.
[12] YI Y M, PARK S H, YOUN S K. Design of microstructures of viscoelastic composites for optimal damping characteristics[J]. International Journal of Solids and Structures, 2000, 37(35):4791-4810.
[13] ANDREASSEN E, JENSEN J S. Topology optimization of periodic microstructures for enhanced dynamic properties of viscoelastic composite materials[J]. Structural and Multidisciplinary Optimization, 2014, 49:695-705.
[14] CHEN W, LIU S. Topology optimization of microstructures of viscoelastic damping materials for a prescribed shear modulus[J]. Structural and Multidisciplinary Optimization, 2014, 50(2):287-296.
[15] CHEN W, LIU S. Microstructural topology optimization of viscoelastic materials for maximum modal loss factor of macrostructures[J]. Structural and Multidisciplinary Optimization, 2016, 53:1-14.
[16] ANDREASEN C S, ANDREASSEN E, JENSEN J S, et al. On the realization of the bulk modulus bounds for two-phase viscoelastic composites[J]. Journal of the Mechanics and Physics of Solids, 2014, 63:228-241.
[17] HUANG X, ZHOU S, SUN G, et al. Topology optimization for microstructures of viscoelastic composite materials[J]. Computer Methods in Applied Mechanics & Engineering, 2015, 283:503-516.
[18] LIU Q, DONG R, HUANG X. Topology optimization of viscoelastic materials on damping and frequency of macrostructures[J]. Computer Methods in Applied Mechanics & Engineering, 2018, 337:305-323.
[19] ANDREASSEN E, JAKOB S J. A practical multiscale approach for optimization of structural damping[J]. Structural & Multidisciplinary Optimization, 2015, 53(2):1-10.
[20] RODRIGUES H, GUEDES J M, BENDSOE M P. Hierarchical optimization of material and structure[J]. Structural and Multidisciplinary Optimization, 2002, 24(1):1-10.
[21] ZHANG W, SUN S. Scale-related topology optimization of cellular materials and structures[J]. International Journal for Numerical Methods in Engineering, 2006, 68(9):993-1011.
[22] NIU B, YAN J, CHENG G. Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency[J]. Structural and Multidisciplinary Optimization, 2009, 39(2):115-132.
[23] ZUO Z H, HUANG X, RONG J H, et al. Multi-scale design of composite materials and structures for maximum natural frequencies[J]. Materials & Design, 2013, 51:1023-1034.
[24] VICENTE W M, ZUO Z H, PAVANELLO R, et al. Concurrent topology optimization for minimizing frequency responses of two-level hierarchical structures[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 301:116-136.
[25] JOHNSON C D, KIENHOLZ D A. Finite element prediction of damping in structures with constrained viscoelastic layers[J]. AIAA Journal, 1982, 20(9):1284-1290.
[26] ZHANG H, DING X, WANG Q, et al. Topology optimization of composite material with high broadband damping[J]. Computers & Structures, 2020, 239:106331.
[27] SVANBERG K. The method of moving asymptotes:A new method for structural optimization[J]. International Journal for Numerical Method on Engineering, 1987, 24:359-373.