电子电气工程与控制

固定鸭舵二维修正弹比例导引律参数优化

  • 曹立飞 ,
  • 曹红松 ,
  • 刘鹏飞 ,
  • 刘恒著 ,
  • 肖艳文
展开
  • 1. 中北大学 机电工程学院, 太原 030051;
    2. 中国人民解放军 32381部队, 北京 100071

收稿日期: 2020-09-14

  修回日期: 2020-10-15

  网络出版日期: 2020-12-25

Parameter optimization of proportional navigation guidance for 2D trajectory correction projectile with fixed canards

  • CAO Lifei ,
  • CAO Hongsong ,
  • LIU Pengfei ,
  • LIU Hengzhu ,
  • XIAO Yanwen
Expand
  • 1. College of Mechatronics Engineering, North University of China, Taiyuan 030051, China;
    2. Unit 32381, PLA, Beijing 100071, China

Received date: 2020-09-14

  Revised date: 2020-10-15

  Online published: 2020-12-25

摘要

针对固定鸭舵二维修正机构控制力有限和比例导引法控制末段需用过载变化过大的问题,提出了一种基于重力补偿比例导引律的过载阈值控制策略。分析了固定鸭舵二维修正机构的控制力及力矩,以落点弹目距离最小为目标函数,选取纵向和横向平面导引系数及过载阈值为设计变量,在重力补偿比例导引律的基础上建立了导引律参数优化模型,并采用差分进化算法(DE)对其进行优化。最后通过外弹道仿真分别从控制段飞行稳定性、控制效率、控制机构过载及控制精度几个方面与传统比例导引律进行对比分析,同时使用蒙特卡洛法验证了控制策略的有效性。结果表明:与传统比例导引律相比,使用该控制策略提高了二维弹道修正迫弹的控制效率,有效降低了控制末段需用过载,弹道控制段飞行稳定性明显提高。

本文引用格式

曹立飞 , 曹红松 , 刘鹏飞 , 刘恒著 , 肖艳文 . 固定鸭舵二维修正弹比例导引律参数优化[J]. 航空学报, 2021 , 42(6) : 324751 -324751 . DOI: 10.7527/S1000-6893.2020.24751

Abstract

To solve the problems of limited control force of the 2D correction mechanism with fixed canards and the overload variation required at the end of the control section by the Proportional Navigation Guidance (PNG), an overload threshold control strategy based on the PNG is proposed. The control forces and moments of the correction mechanism are analyzed. With the objective function of the minimum distance between the projectile and target, the longitudinal and transverse planar guidance coefficients and overload thresholds are selected as the design variables, and a parameter optimization model is established based on the PNG. The model is then optimized by the Differential Evolution (DE) algorithm. Finally, the control strategy proposed is compared with the traditional PNG in terms of flight stability, control efficiency, control mechanism overload, and control accuracy by external ballistic simulation, and the effectiveness of the control strategy is also verified by the Monte-Carlo method. The results show that compared with the traditional PNG, the control strategy proposed can improve the flight stability of the control section and reduce the overload at the end of the control section of the 2D ballistic correction projectile.

参考文献

[1] ZHAO H D, LI Z P, ZHANG H S. Ultra-tight GPS/IMU integration based long-range rocket projectile navigation[J]. Journal of Measurement Science and Instrumentation, 2016, 66:64-70.
[2] 赵捍东, 李志鹏, 王芳. 基于惯性/地磁的弹体组合测姿方法[J]. 探测与控制学报, 2016, 38(3):47-51,56. ZHAO H D, LI Z P, WANG F. Projectile attitude estimation based on inertial & magneto integrated measurement[J]. Journal of Detection & Control, 2016, 38(3):47-51,56(in Chinese).
[3] 刘宗源, 高敏, 王毅, 等. 二维弹道修正引信滚转角专家系统PID控制算法[J]. 现代防御技术, 2019, 47(2):24-29. LIU Z Y, GAO M, WANG Y, et al. Expert system PID algorithm for roll angle of two-dimensional trajectory Correction fuze[J]. Modern Defence Technology, 2019, 47(2):24-29(in Chinese).
[4] 杨宝清, 杨东晓, 朱远海. 迫击炮可动舵二维修正引信气动特性研究[J]. 兵器装备工程学报, 2020, 41(2):30-34. YANG B Q, YANG X D, ZHU H Y. Study on aerodynamic characteristics of two-dimensional modified fuze for movable rudder of mortar[J]. Journal of Ordnance Equipment Engineering,2020, 41(2):30-34(in Chinese).
[5] 普承恩, 王良明, 傅健. 基于EKF落点预测的二维弹道修正弹制导方法[J]. 兵器装备工程学报, 2018, 39(6):52-57. PU C E, WANG L M, FU J. A guidance method for two-dimensional trajectory correction projectile based on impact point prediction pf EKF[J]. Journal of Ordnance Equipment Engineering, 2018, 39(6):52-57(in Chinese).
[6] PAVKOVIC B, PAVIC M, CUK D. Frequency-modulated pulse-jet control of an artillery rocket[J]. Journal of Spacecraft and Rockets, 2012, 49(2):286-294.
[7] ROGERS J, COSTELLO M. Design of a roll-stabilized mortar projectile with reciprocating canards[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1026-1034.
[8] BURCHETT B, JITPRAPHAI T, COSTELLO M. A comparison of different guidance schemes for a direct fire rocket with a pulse jet control mechanism[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Restom:AIAA, 2001.
[9] RATLIFF R, RAMSEY J, WISE K, et al. Advances in agile maneuvering for high performance munitions[C]//AIAA Guidance, Navigation, and Control Conference.Restom:AIAA, 2009.
[10] ZHANG Y, GAO M, YANG S, et al. An adaptive proportional navigation guidance law for guided mortar projectiles[J]. The Journal of Defense Modeling and Simulation:Applications, Methodology, Technology, 2016, 13(4):467-475.
[11] FRESCONI F, CELMINS I, SILTON S, et al. High maneuverability projectile flight using low cost components[J]. Aerospace Science and Technology, 2015, 41:175-188.
[12] 杨泗智, 龚春林, 郝波, 等. 基于落点预测的高旋火箭弹弹道修正算法[J]. 航空学报, 2020, 41(2):323421. YANG S Z, GONG C L, HAO B, et al. Ballistic trajectory correction algorithms of high-spin rocket based on impact point prediction[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):323421(in Chinese).
[13] GROSS M, COSTELLO M. Impact point model predictive control of a spin-stabilized projectile with instability protection[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228(12):2215-2225.
[14] WANG Y, SONG W, FANG D, et al. Guidance and control design for a class of spin-stabilized projectiles with a two-dimensional trajectory correction fuze[J]. International Journal of Aerospace Engineering, 2015, 2015:1-15.
[15] GAGNON E, VACHON A. Efficiency analysis of canards-based course correction fuze for a 155-mm spin-stabilized projectile[J]. Journal of Aerospace Engineering, 2016, 29(6):04016055.
[16] ZHANG X, YAO X, ZHENG Q. Impact point prediction guidance based on iterative process for dual-spin projectile with fixed canards[J]. Chinese Journal of Aeronautics, 2019, 32(8):1967-1981.
[17] 赵捍东. 脉冲发动机提供控制力的火箭弹弹道修正理论及技术研究[D]. 南京:南京理工大学, 2008. ZHAO H D. The study of theory and technique for rocket trajectory correction by the control force of lateral push jet[D]. Nanjing:Nanjing University of Science & Technology, 2008(in Chinese).
[18] 刘旭东. 旋转稳定弹二维弹道修正技术[D]. 北京:北京理工大学, 2016. LIU X D. Research on two-dimensional trajectory correction technology for spin-stabilized projectile[D]. Beijing:Beijing Institute of Technology, 2016(in Chinese).
[19] ADLER F P. Missile guidance by three-dimensional proportional navigation[J]. Journal of Applied Physics, 1956, 27(5):500-507.
[20] SōVE F, THEODOULIS S. Design of an H∞ gain-scheduled guidance scheme for a guided projectile[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(11):2399-2417.
[21] 韩子鹏. 弹箭外弹道学[M]. 北京:北京理工大出版社, 2008. HAN Z P. Exterior ballistics of projectile and rockets[M]. Beijing:Beijing Institute of Technology Press, 2008(in Chinese).
[22] 王家祥, 杨新民, 王伟, 等. 基于制导炮弹的过重力补偿比例导引律优化设计[J]. 兵器装备工程学报, 2017, 38(7):67-70,88. WANG J X, YANG X M, WANG W, et al. Optimization design of proportional navigation guidance law with gravity over compensation based on guided projectile[J]. Journal of Ordnance Equipment Engineering, 2017, 38(7):67-70,88(in Chinese).
[23] ZHANG Y, GAO M, YANG S, et al. An adaptive proportional navigation guidance law for guided mortar projectiles[J]. The Journal of Defense Modeling and Simulation:Applications, Methodology, Technology, 2016, 13(4):467-475.
[24] 张华. 鸭式布局双旋稳定弹飞行控制方法研究[D]. 南京:南京理工大学, 2017. ZHANG H. Flight control for dual-spin stabilized projectile equipped with canards[D]. Nanjing:Nanjing University of Science & Technology, 2017(in Chinese).
[25] 黎克波, 廖选平, 梁彦刚, 等. 基于纯比例导引的拦截碰撞角约束制导策略[J]. 航空学报, 2020, 41(S2):724277. LI K B, LIAO X P, LIANG Y G, et al. Guidance strategy with impact angle constraint based on pure proportion navigation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2):724277(In Chinese).
[26] STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4):341-359.
[27] 叶年辉, 尤腾, 武宇飞, 等. 基于Kriging代理模型的约束差分进化算法[J/OL]. 航空学报, (2020-10-12)[2020-12-20].https://kns.cnki.net/kcms/detail/11.1929.v.20201011.1617.010.html. YE N H, LONG T, WU Y F, et al. Kriging assisted constrained differential evolution algorithm[J/OL]. Acta Aeronautica et Astronautica Sinica, (2020-10-12)[2020-12-20]. https://kns.cnki.net/kcms/detail/11.1929.v.20201011.1617.010.html (in Chinese).
[28] LI N, MU A, YANG X, et al. A Novel composite adaptive flap controller design by a high-efficient modified differential evolution identification approach[J]. ISA Transactions, 2018, 76:197-215.
[29] DATTA A, OCHOA J. Adaptive internal model control:design and stability analysis[J]. Automatica, 1996, 32(2):261-266.
[30] QIU Z, SANTILLO M, JANKOVIC M, et al. Composite adaptive internal model control and its application to boost pressure control of a turbocharged gasoline engine[J]. IEEE Transactions on Control Systems Technology, 2015, 23(6):2306-2315.
[31] SZOLLOSI A, BARANYI P. Improved control performance of the 3-DoF aeroelastic wing section:A TP model based 2D parametric control performance optimization:improved control performance via 2 D parametric manipulation of TP models[J]. Asian Journal of Control, 2017, 19(2):450-466.
文章导航

/