电子电气工程与控制

模糊线性/非线性自抗扰切换控制及其应用

  • 吴正平 ,
  • 邓聪 ,
  • 文海
展开
  • 1. 三峡大学 电气与新能源学院, 宜昌 443002;
    2. 中国船舶集团有限公司第710研究所, 宜昌 443003

收稿日期: 2020-09-03

  修回日期: 2020-10-21

  网络出版日期: 2020-12-25

基金资助

国家自然科学基金(61871258)

Fuzzy linear/nonlinear active disturbance rejection switching control and its application

  • WU Zhengping ,
  • DENG Cong ,
  • WEN hai
Expand
  • 1. School of Electrical and New Energy, China Three Gorges University, Yichang 443002, China;
    2. 710 Institute of China Shipbuilding Industry Corporation, Yichang 443003, China

Received date: 2020-09-03

  Revised date: 2020-10-21

  Online published: 2020-12-25

Supported by

National Natural Science Foundation of China (61871258)

摘要

针对干扰弹在作战过程中所遇到的强非线性的干扰、模型不确定性的影响等特性,提出了一种模糊线性/非线性自抗扰切换控制器。首先,以干扰弹滚转运动模拟装置为研究对象,分别建立了以飞轮角速度为被控量、滚转角为被控量的数学模型;提出了用模糊规则改进线性/非线性自抗扰切换控制条件,进而实现更为平稳的模糊软切换;然后选择采用飞轮角速度线性自抗扰控制内环和滚转角模糊线性/非线性自抗扰切换控制外环的双闭环控制策略;最后,搭建了系统的仿真模型与实验平台。仿真与实验结果都表明该控制器兼具了线性自抗扰与非线性自抗扰的优势,具有较高的实际应用价值。

本文引用格式

吴正平 , 邓聪 , 文海 . 模糊线性/非线性自抗扰切换控制及其应用[J]. 航空学报, 2021 , 42(9) : 324710 -324710 . DOI: 10.7527/S1000-6893.2020.24710

Abstract

A fuzzy linear/nonlinear active disturbance rejection switching controller is proposed to deal with the strong nonlin-ear interference and the influence of model uncertainty encountered by the jamming bomb in the combat process. Firstly, mathematical models with the flywheel angular velocity as the controlled variable and the rolling angle as the controlled variable are established for the roll motion simulation device of the jamming projectile. The fuzzy rules are used to improve the linear/nonlinear active disturbance rejection switching control conditions, so as to achieve more stable fuzzy soft switching. Then, the strategies of the closed inner loop of Active Disturbance Rejection Control (ADRC) of flywheel angular velocity and the closed outer loop of fuzzy linear/nonlinear active disturb-ance rejection switching control of roll angle are used. Finally, the simulation model and experimental platform of the system are built. The simulation and experimental results show that the controller has the advantages of linear and nonlinear ADRC, and has high applicability.

参考文献

[1] 张杰, 陈栋, 房施东. 典型环境下有源通信干扰弹作战使用研究[J]. 弹箭与制导学报, 2020, 40(2):15-18, 140. ZHANG J, CHEN D, FANG S D. Research on operational use of active communication jamming shell in typical environment[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(2):15-18, 140(in Chinese).
[2] 刘松涛, 陈奇, 高东华. 面源红外干扰弹防御反舰导弹的干扰效果评估[J]. 激光与红外, 2014, 44(9):1025-1029. LIU S T, CHEN Q, GAO D H. Jamming effectiveness evaluation for shipborne surface-type infrared decoy defensing anti-ship missile[J]. Laser & Infrared, 2014, 44(9):1025-1029(in Chinese).
[3] NESLINE F W, WELLS B H, ZARCHAN P. Combined optimal/classical approach to robust missile autopilot design[J]. Journal of Guidance, Control and Dynamics, 1981, 4(3):316-322.
[4] RODDY D J, IRWIN G W, WILSON H. Approaches to roll-loop design for BTT CLOS Guidance[J]. IEE Proceedings D Control Theory and Applications, 1985, 132(6):268.
[5] PARKES N E, ROBERTS A P, WILSON H. Roll loop design for bank-to-turn guidance by polynomial methods[J]. IEE Proceedings D Control Theory and Applications, 1993, 140(6):435.
[6] 刘冰, 高嵩, 何宁, 等. 基于PID控制的导弹分通道仿真[J]. 电子设计工程, 2009, 17(11):97-99. LIU B, GAO S, HE N, et al. Missile sub-channel simulation based on PID control[J]. Electronic Design Engineering, 2009, 17(11):97-99(in Chinese).
[7] 汤柏涛, 董斌, 于云峰. BTT导弹滚转通道模型参考变结构自动驾驶仪设计[J]. 计算机测量与控制, 2011, 19(1):105-107. TANG B T, DONG B, YU Y F. Autopilot design for BTT missile based on model reference variable structure control[J]. Computer Measurement & Control, 2011, 19(1):105-107(in Chinese).
[8] LI Z J, XIA Y Q, SU C Y, et al. Missile guidance law based on robust model predictive control using neural-network optimization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(8):1803-1809.
[9] DONG Z, CHEN J B, SONG C L, et al. Design of longitudinal control system for target missiles based on fuzzy adaptive PID control[C]//201729th Chinese Control and Decision Conference (CCDC). Piscataway:IEEE Press, 2017:398-402.
[10] TRIVEDI P K, BANDYOPADHYAY B, MAHATA S, et al. Roll stabilization:A higher-order sliding-mode approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3):2489-2496.
[11] 刘晓, 莫波, 刘福祥, 等. 滚转弹两框架导引头的前馈补偿技术[J]. 航空学报, 2016, 37(12):3764-3773. LIU X, MO B, LIU F X, et al. Feed-forward compensation of two-axis gimbal seeker installed on roll missile[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3764-3773(in Chinese).
[12] 张晓宇, 贺有智, 王子才. 基于H性能指标的质量矩拦截弹鲁棒控制[J]. 航空学报, 2007, 28(3):634-640. ZHANG X Y, HE Y Z, WANG Z C. Robust control of mass moment interception missile based on H performance characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3):634-640(in Chinese).
[13] ZHONG S Y, LIN C, ZHANG Q Z, et al. Modeling and active disturbance rejection controller design of spin missiles[C]//2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC). Piscataway:IEEE Press, 2016:481-486.
[14] 韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1):19-23 HAN J Q. Auto-disturbances-rejection controller and its applications[J]. Control and Decision, 1998, 13(1):19-23(in Chinese)
[15] GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the 2003 American Control Conference. Piscataway:IEEE Press, 2003:4989-4996.
[16] 李杰, 齐晓慧, 夏元清, 等. 线性/非线性自抗扰切换控制方法研究[J]. 自动化学报, 2016, 42(2):202-212. LI J, QI X H, XIA Y Q, et al. On linear/nonlinear active disturbance rejection switching control[J]. Acta Automatica Sinica, 2016, 42(2):202-212(in Chinese).
[17] LI J, XIA Y Q, QI X H, et al. On the necessity, scheme, and basis of the linear-nonlinear switching in active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2):1425-1435.
[18] 牛国臣, 王巍, 魏志强, 等. 基于力矩前馈和舵机角度补偿的力矩控制[J]. 北京航空航天大学学报, 2013, 39(3):300-304. NIU G C, WANG W, WEI Z Q, et al. Torque control based on torque feedforward and rudder angle compensation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(3):300-304(in Chinese).
[19] WANG M Y, NIU Y J, YANG R, et al. A robust double closed-loop control scheme for PMLSM drives[J]. IEEE Access, 2018, 6:62645-62654.
[20] SōVE F, THEODOULIS S, WERNERT P, et al. Flight dynamics modeling of dual-spin guided projectiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4):1625-1641.
[21] HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3):900-906.
[22] 高志强. 自抗扰控制思想探究[J]. 控制理论与应用, 2013, 30(12):1498-1510. GAO Z Q. On the foundation of active disturbance rejection control[J]. Control Theory & Applications, 2013, 30(12):1498-1510(in Chinese).
文章导航

/