论文

月球探测器天文测角/单程无线电时间差分测距/差分测速导航方法

  • 宁晓琳 ,
  • 梁晓钰 ,
  • 吴伟仁 ,
  • 房建成
展开
  • 1. 北京航空航天大学 前沿科学技术创新研究院, 北京 100191;
    2. 北京航空航天大学 仪器科学与光电工程学院, 北京 100191;
    3. 北京航空航天大学 未来空天技术学院, 北京 100191;
    4. 探月与航天工程中心, 北京 100037

收稿日期: 2020-07-11

  修回日期: 2020-09-29

  网络出版日期: 2020-12-25

基金资助

国家自然科学基金(61722301);空间智能控制技术重点实验室开放基金(ZDSYS-2017-04)

Lunar probe navigation based on celestial angle measurement, one-way radio time-differenced distance and time-differenced velocity measurement

  • NING Xiaolin ,
  • LIANG Xiaoyu ,
  • WU Weiren ,
  • FANG Jiancheng
Expand
  • 1. Research Institute for Frontier Science, Beihang University, Beijing 100191, China;
    2. School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China;
    3. School of Future Aerospace Technology, Beihang University, Beijing 100191, China;
    4. Lunar Exploration and Space Engineering Center, Beijing 100037, China

Received date: 2020-07-11

  Revised date: 2020-09-29

  Online published: 2020-12-25

Supported by

National Natural Science Foundation of China (61722301); Funded by Science and Technology on Space Intelligent Control Laboratory (ZDSYS-2017-04)

摘要

月球探测器高精度导航技术是确保月球探测任务顺利实施的关键技术之一。当前,大多数月球探测器都是利用地面无线电进行导航和控制,但存在可测控弧段短、易受干扰等局限性,且对于月球背面探测,存在无法直接测控的不足。针对上述问题,提出了一种新的基于天文测角/单程无线电差分测距/差分测速的月球探测器组合导航方法。该方法使用了天文星光角距、探测器接收到的来自地面站或中继星的单程无线电时间差分测距和时间差分多普勒测速3种量测信息,可有效抑制星上时钟和频谱仪的时间和频率测量误差。收敛后的平均位置和速度估计误差分别为902.7 m和0.12 m/s,最大的位置和速度估计误差分别为1 548.2 m和0.24 m/s。仿真分析结果表明该方法具有较高自主导航精度。

本文引用格式

宁晓琳 , 梁晓钰 , 吴伟仁 , 房建成 . 月球探测器天文测角/单程无线电时间差分测距/差分测速导航方法[J]. 航空学报, 2021 , 42(11) : 524531 -524531 . DOI: 10.7527/S1000-6893.2020.24531

Abstract

The high-precision navigation technology of the lunar probe is one of the key technologies to ensure the smooth implementation of the lunar exploration mission. Currently, most lunar probes depend on ground radio station for navigation and control, but have some limitations such as short measurable and controllable arcs and susceptibility to interferences. In addition, for the detection of the back of the moon, the lunar probes such as Chang'e-4 cannot be directly measured and controlled. To solve the above problems, a new integrated navigation method is proposed for the lunar probe. This method uses three types of measurement information:celestial angle measurement, one-way radio time-differenced distance measurement received from the ground station or relay satellite by the probe, and time-differenced Doppler velocity measurement. The method can effectively suppress the time and frequency measurement errors of the on-board clock and spectrum analyzer. The simulation analysis results show that the average position and velocity estimation errors after convergence of the method are 902.7 m and 0.12 m/s, respectively, and the maximum position and velocity estimation errors are 1548.2 m and 0.24 m/s, respectively, which means that this method has high autonomous navigation accuracy.

参考文献

[1] 张伟. 深空探测天文测角测速组合自主导航方法[J]. 飞控与探测, 2018, 1(1):41-47. ZHANG W. Novel autonomous celestial integrated navigation method based on angle measurement and velocity measurement[J]. Flight Control & Detection, 2018, 1(1):41-47(in Chinese).
[2] 崔平远, 徐瑞, 朱圣英, 等. 深空探测器自主技术发展现状与趋势[J]. 航空学报, 2014, 35(1):13-28. CUI P Y, XU R, ZHU S Y, et al. State of the art and development trends of on-board autonomy technology for deep space explorer[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):13-28(in Chinese).
[3] 吴伟仁, 王琼, 唐玉华, 等. "嫦娥4号"月球背面软着陆任务设计[J]. 深空探测学报, 2017, 4(2):111-117. WU W R, WANG Q, TANG Y H, et al. Design of Chang'e-4 lunar farside soft-landing mission[J]. Journal of Deep Space Exploration, 2017, 4(2):111-117(in Chinese).
[4] 杨小会, 秦永元, 朱启举. 基于UKF的星光角距卫星自主导航方法研究[J]. 弹箭与制导学报, 2006, 26(1):901-904. YANG X H, QIN Y Y, ZHU Q J. Satellite autonomous navigation by starlight angle with UKF[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(1):901-904(in Chinese).
[5] 袁利, 王苗苗, 武延鹏, 等. 空间星光测量技术研究发展综述[J]. 航空学报, 2020, 41(8):623724. YUAN L, WANG M M, WU Y P, et al. Development of space starlight measurement technology:Review[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):623724(in Chinese).
[6] 房建成, 宁晓琳, 田玉龙. 航天器自主天文导航原理与方法[M]. 2版.北京:国防工业出版社, 2006. FANG J C, NING X L, TIAN Y L. Principles and methods of spacecraft celestial navigation[M]. 2nd edition. Beijing:National Defense Industry Press, 2006(in Chinese).
[7] 于国斌, 刘继忠, 张立华. 搭建地月通信纽带的"嫦娥"四号中继星"鹊桥"[J]. 中国航天, 2019(1):19-23. YU G B, LIU J Z, ZHANG L H. Queqiao relay satellite, a bridge between the Earth and the Moon[J]. Aerospace China, 2019(1):19-23(in Chinese).
[8] 宁晓琳, 房建成. 基于信息融合的深空探测器的自主导航方法[J]. 中国空间科学技术, 2004, 24(1):66-71. NING X L, FANG J C. A new method of autonomous navigation for deep space explorer based on information fusion[J]. Chinese Space Science and Technology, 2004, 24(1):66-71(in Chinese).
[9] 张伟, 黄庆龙, 陈晓. 基于天文测角测速组合的小行星探测器自主导航方法[J]. 中国科学:物理学力学天文学, 2019, 49(8):92-101. ZHANG W, HUANG Q L, CHEN X. Autonomous celestial navigation method of asteroid probe based on angle measurement and velocity measurement[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(8):92-101(in Chinese).
[10] 单明宁. 多普勒测速和调相测距跟踪系统的理论误差分析[J]. 电讯技术, 1974, 14(2):42-76. SHAN M N. Theoretical error analysis of Doppler velocity measurement and phase modulation ranging tracking system[J]. Telecommunication Engineering, 1974, 14(2):42-76(in Chinese).
[11] GUI M Z, NING X L, MA X, et al. A novel celestial aided time-differenced pulsar navigation method against ephemeris error of Jupiter for Jupiter exploration[J]. IEEE Sensors Journal, 2019, 19(3):1127-1134.
[12] 宁晓琳, 宫晓琳, 李建利. 先进滤波方法及其在导航中的应用[M]. 北京:国防工业出版社, 2019. NING X L, GONG X L, LI J L. Advanced filtering methods and their applications in navigation[M]. Beijing:National Defense Industry Press, 2019(in Chinese).
[13] 郗晓宁. 月球探测器轨道动力学及其设计[D]. 上海:中国科学院上海天文台, 2000. XI X N. The Orbital dynamics and design of lunar probe[D]. Shanghai; Shanghai Astronomical Observatory,Chinese Academy of Sciences, 2000.
[14] 彭坤, 黄震, 杨宏, 等. 基于弹道逃逸和小推力捕获的地月转移轨道设计[J]. 航空学报, 2018, 39(8):322047. PENG K, HUANG Z, YANG H, et al. Design of trans-lunar trajectory based on ballistic escape and low-thrust capture[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8):322047(in Chinese).
[15] 唐歌实. 深空测控无线电测量技术[M]. 北京:国防工业出版社, 2012. TANG G S. Radiometric measuring techniques for deep space navigation[M]. Beijing:National Defense Industry Press, 2012(in Chinese).
[16] 成亚勇. 航天测控系统中双向多普勒测速误差分析[J]. 数字技术与应用, 2016(1):255-256. CHENG Y Y. Error analysis of bidirectional Doppler velocity measurement in space TT & C system[J]. Digital Technology and Application, 2016(1):255-256(in Chinese).
[17] 安笛. UKF性能分析及其在组合导航中的应用[D]. 哈尔滨:哈尔滨工程大学, 2011. AN D. Performance analysis of UKF and the application in integrated navigation system[D]. Harbin:Harbin Engineering University, 2011(in Chinese).
[18] 高珊, 周文艳, 梁伟光, 等. 地月拉格朗日L2点中继星轨道分析与设计[J]. 深空探测学报, 2017, 4(2):122-129. GAO S, ZHOU W Y, LIANG W G, et al. Trajectory analysis and design for relay satellite at Lagrange L2 point of earth-moon system[J]. Journal of Deep Space Exploration, 2017, 4(2):122-129(in Chinese).
[19] 刘林, 汤靖师, 侯锡云. 地-月系平动点轨道的特征及其相关问题[J]. 天文学报, 2018, 59(3):86-97. LIU L, TANG J S, HOU X Y. The characteristics and related problems of the orbits around the earth-moon libration points[J]. Acta Astronomica Sinica, 2018, 59(3):86-97(in Chinese).
[20] 曹鹏飞, 李维国, 王俊彦, 等. 高精度模型下Halo轨道设计研究[J]. 深空探测学报, 2019, 6(3):277-283. CAO P F, LI W G, WANG J Y, et al. Study on halo orbit design under high precision model[J]. Journal of Deep Space Exploration, 2019, 6(3):277-283(in Chinese).
[21] 孙宝升, 张俊丽. 月球中继卫星轨道设计分析[J]. 载人航天, 2012, 18(4):63-69. SUN B S, ZHANG J L. Analysis on the design of Lunar relay satellite orbit[J]. Manned Spaceflight, 2012, 18(4):63-69(in Chinese).
[22] 黄文德, 郗晓宁, 王威. 基于STK的月球探测任务分析、设计与验证方法[J]. 中国空间科学技术, 2010, 30(6):72-80. HUANG W D, XI X N, WANG W. Methods of mission analysis, design and validation for lunar exploration based on STK[J]. Chinese Space Science and Technology, 2010, 30(6):72-80(in Chinese).
[23] 曹辉, 熊智, 郁丰. 星座双频测距测速自主定位与守时[J]. 应用科学学报, 2009, 27(2):216-220. CAO H, XIONG Z, YU F. Autonomous constellation positioning and timing by dual-frequency inter-satellite measurement[J]. Journal of Applied Sciences, 2009, 27(2):216-220(in Chinese).
[24] 王瞧. 地基测控系统测量误差标校技术研究[D]. 杭州:浙江大学, 2019. WANG Q. Research on measurement error calibration technique of ground-based TT&C systems[D]. Hangzhou:Zhejiang University, 2019(in Chinese).
[25] 徐茂格. 深空微波高精度测距测速技术[J]. 电讯技术, 2017, 57(1):22-26. XU M G. High-accuracy radio ranging and velocity measurement technology for deep space exploration[J]. Telecommunication Engineering, 2017, 57(1):22-26(in Chinese).
文章导航

/