电子电气工程与控制

空间非合作目标多指包络抓捕路径设计

  • 万文娅 ,
  • 孙冲 ,
  • 袁建平
展开
  • 西北工业大学 航天学院, 西安 710072

收稿日期: 2020-03-31

  修回日期: 2020-05-11

  网络出版日期: 2020-12-24

基金资助

国家自然科学基金(11802238)

Multi-finger caging-based gripping path design for space non-cooperative targets

  • WAN Wenya ,
  • SUN Chong ,
  • YUAN Jianping
Expand
  • School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2020-03-31

  Revised date: 2020-05-11

  Online published: 2020-12-24

Supported by

National Natural Science Foundation of China (11802238)

摘要

针对现有空间非合作目标抓捕中存在无固定抓捕点以及待抓捕目标存在动态性等问题,提出了一种"主-从"式多指包络抓捕路径设计算法。首先,为了降低多指包络构型设计中的自由度,将多指机构分为一根主手指和其余从手指两类。然后,为了实现对具有动态性的空间非合作目标的抓捕,采用误差跟踪控制方法使主手指的基关节与包络点之间的运动保持同步。接着,引入单向距离的概念衡量主手指构型和包络边相似度,并利用快速搜索随机树算法寻找使得单向距离最小的主手指关节角取值。进一步,根据多指机构的结构模型,确定其余从手指的构型。最后,根据包络条件选择能够约束住空间非合作目标运动的有效包络构型。通过对可以简化为扁平型的空间非合作目标和一般性三维空间非合作目标这两类目标的包络抓捕仿真可以得出,所设计的算法可适用于一般性空间非合作目标的包络抓捕,同时计算复杂度也大大降低。

本文引用格式

万文娅 , 孙冲 , 袁建平 . 空间非合作目标多指包络抓捕路径设计[J]. 航空学报, 2020 , 41(12) : 324041 -324041 . DOI: 10.7527/S1000-6849.2020.24041

Abstract

Space non-cooperative target capturing is challenging due to the lack of gripping points and the dynamics of the capture targets. A novel multi-finger caging-based gripping path design algorithm with a "Leader-Follower" mode for space non-cooperative targets is proposed. Firstly, to reduce the degrees of freedom, we divide the fingers of the multi-fingered mechanism into one leading finger and the other following fingers. Then, the base joint of the leading finger is controlled to track the caging point using the error control strategy to realize the synchronous motion with the target. In addition, the concept of "One Way Distance" is introduced to measure the similarity between the shape of the leading finger and the caging edge, and the Rapid-exploring Random Trees algorithm is adopted to search the joint angles of the leading finger that can cause the minimum one way distance. Furthermore, possible configurations of the other following fingers are determined according to the structural model of the multi-fingered mechanism. Finally, caging conditions are utilized to obtain effective caging configurations. The proposed algorithm is applied in the caging of a moving planar non-cooperative target and a moving three-dimensional non-cooperative target, respectively. The simulation results show that the proposed algorithm is both applicable for general space non-cooperative target capture and efficient in reducing computational complexity.

参考文献

[1] 路勇, 刘晓光, 周宇, 等. 空间翻滚非合作目标消旋技术发展综述[J]. 航空学报, 2018, 39(1):021302. LU Y, LIU X G, ZHOU Y, et al. Review of detumbling technologies for active removal of uncooperative targets[J]. Acta Aeronaustica et Astronautica Sinica, 2018, 39(1):021302(in Chinese).
[2] 张福海, 付宜利, 王树国. 惯性参数不确定的自由漂浮空间机器人自适应控制研究[J]. 航空学报, 2012, 33(12):2347-2354. ZHANG F H,FU Y L,WAGN S G. Adaptive control of free-floating space robot with inertia parameter uncertainties[J]. Acta Aeronaustica et Astronautica Sinica, 2012, 33(12):2347-2354(in Chinese).
[3] FLORES A A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68:1-26.
[4] 崔乃刚, 王平, 郭继峰, 等. 空间在轨服务技术发展综述[J]. 宇航学报, 2007, 28(4):805-811. CUI N G, WANG P, GUO J F, et al. A review of on-orbit servicing[J]. Journal of Astronautics, 2007, 28(4):805-811(in Chinese).
[5] MAKITA S, WAN W. A survey of robotic caging and its applications[J]. Advanced Robotics, 2017, 31(19-20):1071-1085.
[6] 魏承, 赵阳, 田浩. 空间机器人捕获漂浮目标的抓取控制[J]. 航空学报, 2010, 31(3):632-637. WEI C, ZHAO Y, TIAN H. Grasping control of space robot for capturing floating target[J].Acta Aeronauticaet et Astronautica Sinica, 2010, 31(3):632-637(in Chinese).
[7] 徐文福, 孟得山, 徐超, 等. 自由漂浮空间机器人捕获目标的协调控制[J]. 机器人, 2013, 35(5):559-567. XU W F, MENG D S, XU C, et al. Coordinated control of a free-floating space robot for capturing a target[J]. Robot, 2013, 35(5):559-567(in Chinese).
[8] 孙冲, 袁建平, 万文娅, 等. 自由翻滚故障卫星外包络抓捕及抓捕路径优化[J]. 航空学报, 2018, 39(11):322192. SUN C, YUAN J P, WAN W Y, et al. Outside envelope grasping method and approaching trajectory optimization for tumbling malfunction satellite capture s[J]. Acta Aeronaustica et Astronautica Sinica, 2018, 39(11):322192(in Chinese).
[9] 韩亮亮, 杨健, 赵颖, 等. 基于仿章鱼软体机器人空间碎片柔性自适应捕获装置的设想[J]. 载人航天, 2017, 23(4):469-472. HAN L L, YANG J, ZHAO Y, et al. Assumption on flexible adaptive orbital debris capture device based on octopus-inspired pneumatic soft robot[J]. Manned Space Flight, 2017, 23(4):469-472(in Chinese).
[10] KUPERBERG W. Problems on polytopes and convex sets[C]//Proceedings of DIMACS:Workshop on Polytopes, 1990:584-589.
[11] RIMON E, BLAKE A. Caging planar bodies by one-parameter two-fingered gripping systems[J]. International Journal of Robotics Research, 1999, 18(3):299-318.
[12] VAHEDI M,STAPPEN F V D. Caging plygons with two and three fingers[J]. International Journal of Robotics Research, 2008, 47(27):1308-1324.
[13] PIPATTANASOMPORN P, SUDSANG A. Two-finger caging of concave polygon[C]//International Conference on Robotics and Automation, 2006:2137-2142.
[14] PONCE J, BURDICK J, RIMON E. Computing the immobilizing three-finger grasps of planar objects[C]//Computational Kinematics'95, 1995:291-300.
[15] DAVIDSON C, BLAKE A. Caging planar objects with a three-finger one-parameter gripper[C]//International Conference on Robotics and Automation, 1998:2722-2727.
[16] PIPATTANASOMPORN P, SUDSANG A. Two-finger caging of nonconvex polytopes[J]. IEEE Transactions on Robotics, 2011, 27(2):324-333.
[17] WANG Z D, HIRATA Y, KOSUGE K. Dynamic object closure by multiple mobile robots and random caging formation testing[C]//International Conference on Intelligent Robots and Systems, 2006:3675-3681.
[18] WANG Z D, MATSUMOTO H, HIRATA Y, et al. A path planning method for dynamic object closure by using random caging formation testing[C]//International Conference on Intelligent Robots and Systems, 2009:5923-5929.
[19] WAN W, SHI B, WANG Z, et al. Multirobot object transport via robust caging[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 99:1-11.
[20] 周浦城, 洪炳镕, 王月海. 动态环境下多机器人合作追捕研究[J]. 机器人, 2005, 27(4):289-295. ZHOU P S, HONG B R, WANG Y H. Multi-robot cooperative pursuit under dynamic environment[J]. Robot, 2005, 27(4):289-295(in Chinese).
[21] 付光远, 李源. 多移动机器人动态联盟围捕策略[J]. 计算机应用, 2019, 39(S1):1-7. FU G Y, LI Y. Dynamic alliance pursuit strategy for multiple mobile robots[J]. Journal of Computer Applications, 2019, 39(S1):1-7(in Chinese).
[22] 孙俊, 张世杰, 马也, 等. 空间非合作目标惯性参数的Adaline网络辨识方法[J]. 航空学报, 2016, 37(9):2799-2808. SUN J, ZHANG S J, MA Y, et al. Adaline network-based identification method of inertial parametes for space uncooperative targets[J]. Acta Aeronaustica et Astronautica Sinica, 2016, 37(9):2799-2808(in Chinese).
[23] LI Q, YUAN J, SUN C. Robust fault-tolerant saturated control for spacecraft proximity operations with actuator saturation and faults[J]. Advances in Space Research, 2019, 63:1541-1553.
[24] BHAT S, BERNSTEIN D S. Finite-time stability of homogeneous systems[C]//American Control Conference,1997:2513-2514
[25] LIN B, SU J. One way distance:For shape based similarity search of moving object trajectories[J]. Geoinformatica, 2008, 12(2):117-142.
文章导航

/