流体力学与飞行力学

点火方式对空桶型旋转爆震燃烧室起爆特性的影响

  • 赵明皓 ,
  • 王可 ,
  • 王致程 ,
  • 朱亦圆 ,
  • 于潇栋 ,
  • 范玮
展开
  • 1. 西北工业大学 动力与能源学院, 西安 710072;
    2. 西北工业大学 陕西省航空动力系统热科学重点实验室, 西安 710129

收稿日期: 2020-10-13

  修回日期: 2020-12-21

  网络出版日期: 2020-12-18

基金资助

国家自然科学基金(52076181,51876179);陕西省自然科学基础研究计划(2020JQ-185);中央高校基本科研业务费专项资金(3102018AX006,3102019ZX024);西北工业大学博士生创新基金(CX2021072)

Effects of ignition on initiation characteristics of hollow rotating detonation combustor

  • ZHAO Minghao ,
  • WANG Ke ,
  • WANG Zhicheng ,
  • ZHU Yiyuan ,
  • YU Xiaodong ,
  • FAN Wei
Expand
  • 1. School of Power and Energy, Northwestern Polytechnical University, Xi’an 710072, China;
    2. Shaanxi Key Laboratory of Thermal Sciences in Aeroengine System, Northwestern Polytechnical University, Xi’an 710129, China

Received date: 2020-10-13

  Revised date: 2020-12-21

  Online published: 2020-12-18

Supported by

National Natural Science Foundation of China (52076181, 51876179); Natural Science Basic Research Program of Shaanxi (2020JQ-185); the Fundamental Research Funds for the Central Universities (3102018AX006, 3102019ZX024); Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX2021072)

摘要

为了揭示空桶型旋转爆震燃烧室内爆震波的建立过程及工作特性,分别采用火花塞点火、垂直预爆震管点火和切向预爆震管点火,实验研究了不同点火方式下的爆震波起爆和稳定传播特性。喷注器采用环缝-喷孔对撞式设计,燃料和氧化剂分别为乙烯和富氧空气。结果表明,在空桶型旋转爆震燃烧室中,3种点火方式均可成功起爆并获得稳定传播的爆震波,点火方式对旋转爆震波的传播方向影响较小;与火花塞点火相比,垂直预爆震管点火和切向预爆震管点火均能拓宽旋转爆震燃烧室的稳定工作范围;在氧化剂供给流量和当量比相同的条件下,点火方式的改变并未影响旋转爆震波的传播速度大小;使用预爆震管点火时,旋转爆震波的建立时间较火花塞点火短,且呈现出更小的离散性。

本文引用格式

赵明皓 , 王可 , 王致程 , 朱亦圆 , 于潇栋 , 范玮 . 点火方式对空桶型旋转爆震燃烧室起爆特性的影响[J]. 航空学报, 2022 , 43(1) : 124870 -124870 . DOI: 10.7527/S1000-6893.2020.24870

Abstract

To investigate the initiation process and operating characteristics of rotating detonation waves in the hollow combustor, the initiation and propagation of rotating detonation waves of three ignition methods, i.e., spark plug ignition, vertical pre-detonation tube ignition, and tangential pre-detonation tube ignition, were studied. Ethylene and oxygen-enriched air were used as fuel and oxidizer, respectively. Experimental results indicate that the rotating detonation waves were able to be initiated and propagated steadily with the three ignition methods, which seem to have little influence on the propagating direction of rotating detonation waves. Compared with the results of spark plug ignition, stable detonations were available with a wider range of mass flow rate when adopting vertical and tangential pre-detonation tube ignition. The obtained average propagating velocities of rotating detonations were almost consistent for all the three cases. When the pre-detonation tube was used, the initiation time of rotating detonation wave was obviously shorter and less discrete than that of spark plug ignition.

参考文献

[1] 严传俊, 范玮. 脉冲爆震发动机原理及关键技术[M]. 西安: 西北工业大学出版社, 2005. YAN C J, FAN W. Principle and key technology of pulse detonation engine[M]. Xi’an: Northwestern Polytechnical University Press, 2005(in Chinese).
[2] ZHENG D F, WANG B. Acceleration of DDT by non-thermal plasma in a single-trial detonation tube[J]. Chinese Journal of Aeronautics, 2018, 31(5): 1012-1019.
[3] WANG K, FAN W, YAN Y, et al. Operation of a rotary-valved pulse detonation rocket engine utilizing liquid kerosene and oxygen[J]. Chinese Journal of Aeronautics, 2011, 24(6): 726-733.
[4] MILLER S J, KING P I, SCHAUER F R, et al. Ignition design for a rotating detonation engine[C]//51 st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013.
[5] KATTA V R, CHO K Y, HOKE J L, et al. Effect of increasing channel width on the structure of rotating detonation wave[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3575-3583.
[6] ST GEORGE A, DRISCOLL R B, ANAND V, et al. Starting transients and detonation onset behavior in a rotating detonation combustor[C]//54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016.
[7] ST GEORGE A, RANDALL S, ANAND V, et al. Characterization of initiator dynamics in a rotating detonation combustor[J]. Experimental Thermal and Fluid Science, 2016, 72: 171-181.
[8] ISHIHARA K, NISHIMURA J, GOTO K, et al. Study on a long-time operation towards rotating detonation rocket engine flight demonstration[C]//55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017.
[9] LIU S J, PENG H Y, LIU W D, et al. Effects of cavity depth on the ethylene-air Continuous Rotating Detonation[J]. Acta Astronautica, 2020, 166: 1-10.
[10] 刘世杰, 林志勇, 林伟, 等. H2/Air连续旋转爆震波的起爆及传播过程试验[J]. 推进技术, 2012, 33(3): 483-489. LIU S J, LIN Z Y, LIN W, et al. Experiment on the ignition and propagation processes of H2/Air continuous rotating detonation wave[J]. Journal of Propulsion Technology, 2012, 33(3): 483-489(in Chinese).
[11] 刘世杰, 刘卫东, 林志勇, 等. 连续旋转爆震波传播过程研究(Ⅰ): 同向传播模式[J]. 推进技术, 2014, 35(1): 138-144. LIU S J, LIU W D, LIN Z Y, et al. Research on continuous rotating detonation wave propagation process(Ⅰ): One direction mode[J]. Journal of Propulsion Technology, 2014, 35(1): 138-144(in Chinese).
[12] 刘世杰, 林志勇, 刘卫东, 等. 连续旋转爆震波传播过程研究(Ⅱ): 双波对撞传播模式[J]. 推进技术, 2014, 35(2): 269-275. LIU S J, LIN Z Y, LIU W D, et al. Research on continuous rotating detonation wave propagation process(Ⅱ): Two-wave collision propagation mode[J]. Journal of Propulsion Technology, 2014, 35(2): 269-275(in Chinese).
[13] 王超, 刘卫东, 刘世杰, 等. 吸气式连续旋转爆震与来流相互作用[J]. 航空学报, 2016, 37(5): 1411-1418. WANG C, LIU W D, LIU S J, et al. Interaction of air-breathing continuous rotating detonation with inflow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5): 1411-1418(in Chinese).
[14] WEN H C, WANG B. Experimental study of perforated-wall rotating detonation combustors[J]. Combustion and Flame, 2020, 213: 52-62.
[15] MA J Z, ZHANG S J, LUAN M Y, et al. Experimental investigation on delay time phenomenon in rotating detonation engine[J]. Aerospace Science and Technology, 2019, 88: 395-404.
[16] MA Z, ZHANG S J, LUAN M Y, et al. Experimental research on ignition, quenching, reinitiation and the stabilization process in rotating detonation engine[J]. International Journal of Hydrogen Energy, 2018, 43(39): 18521-18529.
[17] WANG Y H, WANG J P. Effect of equivalence ratio on the velocity of rotating detonation[J]. International Journal of Hydrogen Energy, 2015, 40(25): 7949-7955.
[18] WANG Y H, LE J L. A hollow combustor that intensifies rotating detonation[J]. Aerospace Science and Technology, 2019, 85: 113-124.
[19] 王健平, 姚松柏. 连续爆轰发动机原理与技术[M]. 北京: 科学出版社, 2018. WANG J P, YAO S B. Principle and technology of rotating detonation engine[M]. Beijing: Science Press, 2018(in Chinese).
[20] PENG L, WANG D, WU X S, et al. Ignition experiment with automotive spark on rotating detonation engine[J]. International Journal of Hydrogen Energy, 2015, 40(26): 8465-8474.
[21] YANG C L, WU X S, MA H, et al. Experimental research on initiation characteristics of a rotating detonation engine[J]. Experimental Thermal and Fluid Science, 2016, 71: 154-163.
[22] 彭磊, 王栋, 李飞, 等. 点火方式对旋转爆震发动机工作特性的影响[J]. 推进技术, 2016, 37(11): 2193-2200. PENG L, WANG D, LI F, et al. Effects of ignition method on operating characteristics of rotating detonation wave engine[J]. Journal of Propulsion Technology, 2016, 37(11): 2193-2200(in Chinese).
[23] 彭磊, 王栋, 裴晨曦, 等. 旋转爆震发动机爆震波建立过程实验研究[J]. 推进技术, 2016, 37(10): 1801-1809. PENG L, WANG D, PEI C X, et al. Experiment research on establishing process of rotating detonation wave[J]. Journal of Propulsion Technology, 2016, 37(10): 1801-1809(in Chinese).
[24] 孟豪龙, 翁春生, 武郁文, 等. 基于OpenFOAM的三维H2/Air连续旋转爆轰流场数值模拟[J]. 推进技术, 2020, 41(6): 1351-1360. MENG H L, WENG C S, WU Y W, et al. Three-dimensional numerical simulation of H2/Air continuous rotating detonation flow field based on OpenFOAM[J]. Journal of Propulsion Technology, 2020, 41(6): 1351-1360(in Chinese).
[25] 郑权, 李宝星, 翁春生, 等. 燃烧室长度对液态燃料旋转爆轰发动机性能影响实验研究[J]. 推进技术, 2018, 39(12): 2764-2771. ZHENG Q, LI B X, WENG C S, et al. Experimental investigation for effects of combustor length on liquid-fueled rotating detonation engine performance[J]. Journal of Propulsion Technology, 2018, 39(12): 2764-2771(in Chinese).
[26] 夏镇娟, 马虎, 卓长飞, 等. 圆盘结构下旋转爆震波的不稳定传播特性[J]. 航空学报, 2018, 39(2): 121438. XIA Z J, MA H, ZHUO C F, et al. Characteristics of unstable propagation of rotating detonation wave in plane-radial structure[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 121438(in Chinese).
[27] VOITSEKHOVSKII B V. Stationary spin detonation[J]. Journal of Applied Mechanics and Technical Physics, 1960, 3: 157-164.
[28] VOITSEKHOVSKII B V, MITROFANOV V V, TOPC-HIYAN M E. Structure of the detonation front in gases(survey)[J]. Combustion, Explosion and Shock Waves, 1969, 5(3): 267-273.
[29] NICHOLLS J A, CULLEN R E, RAGLAND K W. Feasibility studies of a rotating detonation wave rocket motor[J]. Journal of Spacecraft and Rockets, 1966, 3(6): 893-898.
[30] BRAUN E, DUNN N, LU F. Testing of a continuous detonation wave engine with swirled injection[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010.
[31] KINDRACKI J, WOLAN'SKI P, GUT Z. Experimental research on the rotating detonation in gaseous fuels-oxygen mixtures[J]. Shock Waves, 2011, 21(2): 75-84.
[32] MIZENER A R, GREEN C J, LU F K. Preliminary qualitative observations of ignition phenomena in rotating detonation engines[C]//22nd AIAA International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2018.
[33] TANG X M, WANG J P, SHAO Y T. Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor[J]. Combustion and Flame, 2015, 162(4): 997-1008.
[34] LIN W, ZHOU J, LIU S J, et al. An experimental study on CH4/O2 continuously rotating detonation wave in a hollow combustion chamber[J]. Experimental Thermal and Fluid Science, 2015, 62: 122-130.
[35] ZHANG H L, LIU W D, LIU S J. Effects of inner cylinder length on H2/air rotating detonation[J]. International Journal of Hydrogen Energy, 2016, 41(30): 13281-13293.
文章导航

/