电子电气工程与控制

基于合作博弈的组网雷达分布式功率分配方法

  • 靳标 ,
  • 邝晓飞 ,
  • 彭宇 ,
  • 张贞凯
展开
  • 江苏科技大学 电子信息学院, 镇江 212000

收稿日期: 2020-09-22

  修回日期: 2020-12-21

  网络出版日期: 2020-12-18

基金资助

国家自然科学基金(61701416,61871203,62001194);江苏省自然科学基金(BK20211341)

Distributed power allocation method for netted radar based on cooperative game theory

  • JIN Biao ,
  • KUANG Xiaofei ,
  • PENG Yu ,
  • ZHANG Zhenkai
Expand
  • College of Electronics and Information, Jiangsu University of Science and Technology, Zhenjiang 212000, China

Received date: 2020-09-22

  Revised date: 2020-12-21

  Online published: 2020-12-18

Supported by

National Natural Science Foundation of China(61701416,61871203,62001194);Natural Science Foundation of Jiangsu Province of China(BK20211341)

摘要

对于去中心化的雷达网络,由于网络拓扑切换和信息传输延时的存在,各雷达节点给出的全局资源分配方案可能不一致。针对此问题,将合作博弈的思想应用于多目标跟踪场景下的组网雷达节点功率分配问题。首先,将信干噪比(SINR)刻画为目标空间位置和雷达发射功率等参量的函数。然后,将去中心化的组网雷达节点功率分配问题建立为以SINR为特征函数的合作博弈模型。采用加权图的思想改进合作博弈Shapley值的计算方法,以降低其计算复杂度,并基于此提出合作博弈模型的快速求解算法。所提方法无需使用复杂的优化算法,实时性较好。仿真实验分析了不同雷达布阵方式对功率分配结果的影响,通过将不同的功率分配方法与所提方法进行对比,表明所提方法可以明显提升组网雷达的目标跟踪性能。

本文引用格式

靳标 , 邝晓飞 , 彭宇 , 张贞凯 . 基于合作博弈的组网雷达分布式功率分配方法[J]. 航空学报, 2022 , 43(1) : 324776 -324776 . DOI: 10.7527/S1000-6893.2020.24776

Abstract

Due to the existence of network topology switching and information transmission delay in the decentralized radar network, the global resource allocation scheme given by each radar node may be inconsistent. To solve this problem, the cooperative game theory is applied to the power allocation of netted radar nodes in multi-target tracking Scenario. Firstly, the Signal to Interference Noise Ratio(SINR) is described as a function of the target spatial position and radar transmitting power. Then, the problem of radar node power allocation in the decentralized network is regarded as a cooperative game model with SINR as the characteristic function. The weighted graph is used to improve the calculation method of the Shapley value of the cooperative game to reduce the computational complexity. A fast algorithm for solving the cooperative game model is then proposed. The proposed method does not need to use the complex optimization algorithm, and has good real-time performance. Simulation results show that the proposed method can significantly improve the target tracking performance of the netted radar.

参考文献

[1] SHI C G, WANG F, ZHOU J J, et al. Resource management for target tracking in distributed radar network system[C]//2015 IEEE International Conference on Signal Processing, Communications and Computing(ICSPCC). Piscataway: IEEE Press, 2015: 1-5.
[2] 谢明池. 分布式组网雷达资源自适应管控算法研究[D]. 成都: 电子科技大学, 2019. XIE M C. Research on resource management algorithms for distributed radar network[D]. Chengdu: University of Electronic Science and Technology of China, 2019(in Chinese).
[3] VAHDANI R, KHALEGHI B H, FALLAH J M. New correlated MIMO radar covariance matrix design with low side lobe levels and much lower complexity[J]. Chinese Journal of Aeronautics, 2021, 34(1): 327-335.
[4] ZHAO Y S, HU D X, ZHAO Y J, et al. Moving target localization in distributed MIMO radar with transmitter and receiver location uncertainties[J]. Chinese Journal of Aeronautics, 2019, 32(7): 1705-1715.
[5] WANG H T, YU J P, YU W Z, et al. Adapitive waveform design for distributed OFDM MIMO radar system in multi-target scenario[J]. Chinese Journal of Aeronautics, 2018, 31(3): 567-574.
[6] LI Z H, SU H T, ZHOU S H, et al. Signal fusion-based targets detection in the presence of clutter and subspace interference for multiple-input-multiple-output radar[J]. IET Radar, Sonar & Navigation, 2019, 13(1): 148-155.
[7] 吴喜亮. 基于分布式雷达网络的多目标检测定位方法研究[D]. 成都: 电子科技大学, 2016. WU X L. Research on multi-target detection and positioning method based on distributed radar network[D]. Chengdu: University of Electronic Science and Technology of China, 2016(in Chinese).
[8] 杨善超, 田康生, 吴长飞. 舰载相控阵雷达组网资源管理的一致性算法[J]. 兵工学报, 2019, 40(10): 2096-2104. YANG S C, TIAN K S, WU C F. Consistency algorithm for resource management of shipborne phased array radar network[J]. Acta Armamentarii, 2019, 40(10): 2096-2104(in Chinese).
[9] BOGDANOVIĆ N, DRIESSEN H, YAROVOY A G. Target selection for tracking in multifunction radar networks: Nash and correlated equilibria[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2448-2462.
[10] PANOUI A, LAMBOTHARAN S, CHAMBERS J A. Game theoretic distributed waveform design for multi-static radar networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4): 1855-1865.
[11] CHEN H W, TA S Y, SUN B. Cooperative game approach to power allocation for target tracking in distributed MIMO radar sensor networks[J]. IEEE Sensors Journal, 2015, 15(10): 5423-5432.
[12] DELIGIANNIS A, PANOUI A, LAMBOTHARAN S, et al. Game-theoretic power allocation and the Nash equilibrium analysis for a multi-static MIMO radar network[J]. IEEE Transactions on Signal Processing, 2017, 65(24): 6397-6408.
[13] SHI C G, WANG F, SELLATHURAI M, et al. Non-cooperative game-theoretic distributed power control technique for radar network based on low probability of intercept[J]. IET Signal Processing, 2018, 12(8): 983-991.
[14] CHALKIADAKIS G, ELKIND E, WOOLDRIDGE M. Cooperative game theory: Basic concepts and computational challenges[J]. IEEE Intelligent Systems, 2012, 27(3): 86-90.
[15] MINCHAEL M, EILON S, SHMUEL Z. 博弈论[M]. 赵世勇, 译. 上海: 格致出版社, 2018: 582-586. MINCHAEL M, EILON S, SHMUEL Z. Game theory[M]. ZHANG S Y, translated. Shanghai: Truth & Wisdom Press, 2018: 582-586(in Chinese).
[16] 徐洋, 袁振涛, 朱景雷, 等. 网络化雷达现状及技术发展趋势[J]. 现代雷达, 2019, 41(10): 14-18, 23. XU Y, YUAN Z T, ZHU J L, et al. A study on developing status and trend of networked radar[J]. Modern Radar, 2019, 41(10): 14-18, 23(in Chinese).
[17] AMARIS H, MOLINA Y P, ALONSO M, et al. Loss allocation in distribution networks based on Aumann-Shapley[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6655-6666.
[18] NAZARI M H, HOSSEINIAN S H, AZAD-FARSANI E. Shapley value-based techno-economic framework for harmonic and loss mitigation[J]. IEEE Access, 2019, 7: 119576-119592.
[19] FAHIMULLAH M, FAHEEM Y, AHMAD N. Collaboration formation and profit sharing between software development firms: A Shapley value based cooperative game[J]. IEEE Access, 2019, 7: 42859-42873.
[20] SHAPLEY L S. Cores of convex games[J]. International Journal of Game Theory, 1971, 1(1): 11-26.
[21] MYERSON R B. Conference structures and fair allocation rules[J]. International Journal of Game Theory, 1980, 9(3): 169-182.
[22] 李理, 单而芳. 图上合作博弈和图的边密度[J]. 运筹学学报, 2018, 22(4): 99-107. LI L, SHAN E F. Graph games and edge density of graphs[J]. Operations Research Transactions, 2018, 22(4): 99-107(in Chinese).
[23] VAN DEN BRINK R, KHMELNITSKAYA A, VAN DER LAAN G. An efficient and fair solution for communication graph games[J]. Economics Letters, 2012, 117(3): 786-789.
[24] KHMELNITSKAYA A, SELÇUK Ö, TALMAN D. The Shapley value for directed graph games[J]. Operations Research Letters, 2016, 44(1): 143-147.
[25] MYERSON R B. Graphs and cooperation in games[J]. Mathematics of Operations Research, 1977, 2(3): 225-229.
[26] BÉAL S, RÉMILA E, SOLAL P. Fairness and fairness for neighbors: The difference between the Myerson value and component-wise egalitarian solutions[J]. Economics Letters, 2012, 117(1): 263-267.
文章导航

/