材料工程与机械制造

基于Deform软件二次开发和BP神经网络的TA15多向锻造微观组织预报

  • 骆俊廷 ,
  • 赵静启 ,
  • 杨哲懿 ,
  • 刘卫鹏 ,
  • 张春祥
展开
  • 1. 燕山大学 先进锻压成形技术与科学教育部重点实验室, 秦皇岛 066004;
    2. 燕山大学 亚稳材料制备技术与科学国家重点实验室, 秦皇岛 066004

收稿日期: 2020-09-01

  修回日期: 2020-10-09

  网络出版日期: 2020-12-18

基金资助

河北省自然科学基金(E2019203005)

Microstructure prediction of multi-directional forging of TA15 alloy based on secondary development of Deform and BP neural network

  • LUO Junting ,
  • ZHAO Jingqi ,
  • YANG Zheyi ,
  • LIU Weipeng ,
  • ZHANG Chunxiang
Expand
  • 1. Education Ministry Key Laboratory of Advanced Forging and Stamping Science and Technology, Yanshan University, Qinhuangdao 066004, China;
    2. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China

Received date: 2020-09-01

  Revised date: 2020-10-09

  Online published: 2020-12-18

Supported by

Natural Science Foundation of Hebei Province (E2019203005)

摘要

通过热压缩实验构建了TA15合金的热变形真应力-应变曲线,以此为基础分别建立了合金双相区及单相区温度区间的热变形本构方程;基于热压缩试样动态再结晶的统计数据建立了TA15合金的动态再结晶模型。借助Deform提供的二次开发功能实现相关数学模型的程序化,制定正交实验方案,实现了TA15合金多向锻造变形的微观组织仿真。通过正交实验分析得出各项因子的影响对象及强弱差异,提出了双相区及单相区温度区间内的多向锻造最佳因子组合。建立了TA15合金多向锻造变形微观组织的BP (Back Propagation)神经网络预测模型,将预测结果与有限元仿真结果进行比较,结果表明两种方法的预测结果基本一致,但神经网络具备有限元仿真难以实现的良好细节预测能力,能更为细致地实现对微观组织分布状态的划分。

本文引用格式

骆俊廷 , 赵静启 , 杨哲懿 , 刘卫鹏 , 张春祥 . 基于Deform软件二次开发和BP神经网络的TA15多向锻造微观组织预报[J]. 航空学报, 2021 , 42(12) : 424693 -424693 . DOI: 10.7527/S1000-6893.2020.24693

Abstract

The true stress-strain curve of hot deformation of TA15 alloy was constructed through the hot compression test. The constitutive equations for hot deformation in the temperature range of the dual-phase region and single-phase region of the alloy were then established. A dynamic recrystallization model of TA15 alloy was established based on the statistical data of dynamic recrystallization of hot compressed samples. With the help of the secondary development function provided by Deform, programming of related mathematical models was realized, the experimental plan was formulated by the orthogonal method, and then simulation of the microstructure evolution of the multi-directional forging deformation of the dual-phase region and single-phase region of TA15 alloy was realized. Through analysis of the orthogonal experiment results, the objects under the influence of various factors and the influence degree of the factors were obtained, and the optimal combination of factors for multi-directional forging in the temperature range of the dual-phase region and the single-phase region was proposed. A Back Propagation (BP) neural network prediction model for the multi-directional forging deformation microstructure of TA15 alloy was established. The prediction results were compared with the finite element simulation results. The comparison results show that the prediction results of the two methods are basically the same, but the neural network based method can predict details, which is difficult to be achieved by finite element simulation, and thus can achieve more detailed division of microstructure distribution.

参考文献

[1] ZHANG J H, LI X X, XU D S, et al. Recent progress in the simulation of microstructure evolution in titanium alloys[J]. Progress in Natural Science:Materials International, 2019, 29(3):295-304.
[2] 丁文锋, 奚欣欣, 占京华, 等. 航空发动机钛材料磨削技术研究现状及展望[J]. 航空学报, 2019, 40(6):022763. DING W F, XI X X, ZHAN J H, et al. Research status and future development of grinding technology of titanium materials for aero-engines[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):022763(in Chinese).
[3] 赵波, 李鹏涛, 张存鹰, 等. 超声振动方向对TC4钛合金铣削特性的影响[J]. 航空学报, 2020, 41(2):623301. ZHAO B, LI P T, ZHANG C Y, et al. Effect of ultrasonic vibration direction on milling characteristics of TC4 titanium alloy[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):623301(in Chinese).
[4] WANG Y, ZHU J C, LAI Z H, et al. Hot compressive deformation behaviour and microstructural variation of TA15 titanium alloy[J]. Materials Science and Technology, 2005, 21(12):1466-1470.
[5] 鹿靖, 王玉会, 张旺峰. 组织形态对近α型TA15钛合金拉伸性能的影响[J]. 金属热处理, 2011, 36(6):25-28. LU J, WANG Y H, ZHANG W F. Effect of microstructure on tensile properties of near-alpha TA15 titanium alloy[J]. Heat Treatment of Metals, 2011, 36(6):25-28(in Chinese).
[6] SRINIVASAN R, RAMNARAYAN V, DESHPANDE U, et al. Computer simulation of the forging of fine grain IN-718 alloy[J]. Metallurgical Transactions A, 1993, 24(9):2061-2069.
[7] MA Q, LIN Z Q, YU Z Q. Prediction of deformation behavior and microstructure evolution in heavy forging by FEM[J]. The International Journal of Advanced Manufacturing Technology, 2009, 40(3-4):253-260.
[8] LI A H, PANG J M, ZHAO J, et al. FEM-simulation of machining induced surface plastic deformation and microstructural texture evolution of Ti-6Al-4V alloy[J]. International Journal of Mechanical Sciences, 2017, 123:214-223.
[9] 朱帅, 杨合, 郭良刚, 等. TA15钛合金环件径轴向辗轧成形全过程组织演变模拟[J]. 航空学报, 2014, 35(11):3145-3155. ZHU S, YANG H, GUO L G, et al. Simulation of microstructure evolution during the whole process of radial-axial rolling of TA15 titanium alloy ring[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):3145-3155(in Chinese).
[10] WU G P. Application of BP and RBF neural network in classification prognosis of hepatitis B virus reactivation[J]. Journal of Electrical and Electronic Engineering, 2016, 4(2):35.
[11] SUN Y, ZENG W D, ZHAO Y Q, et al. Development of constitutive relationship model of Ti600 alloy using artificial neural network[J]. Computational Materials Science, 2010, 48(3):686-691.
[12] SUN Z C, YANG H, TANG Z. Microstructural evolution model of TA15 titanium alloy based on BP neural network method and application in isothermal deformation[J]. Computational Materials Science, 2010, 50(2):308-318.
[13] LI M Q, ZHANG X Y. Modeling of the microstructure variables in the isothermal compression of TC11 alloy using fuzzy neural networks[J]. Materials Science and Engineering:A, 2011, 528(6):2265-2270.
[14] SZKLINIARZ W, CHRAPON'SKI J, KOS'CIELNA A, et al. Substructure of titanium alloys after cyclic heat treatment[J]. Materials Chemistry and Physics, 2003, 81(2-3):538-541.
[15] LI X F, CHEN X, LI B Y, et al. Grain refinement mechanism of Ti-55 titanium alloy by hydrogenation and dehydrogenation treatment[J]. Materials Characterization, 2019, 157:109919.
[16] ANSARIAN I, SHAERI M H, EBRAHIMI M, et al. Microstructure evolution and mechanical behaviour of severely deformed pure titanium through multi directional forging[J]. Journal of Alloys and Compounds, 2019, 776:83-95.
[17] ITO Y, HOSHI N, HAYAKAWA T, et al. Mechanical properties and biological responses of ultrafine-grained pure titanium fabricated by multi-directional forging[J]. Materials Science and Engineering:B, 2019, 245:30-36.
[18] 纪小虎, 李萍, 时迎宾, 等. TA15钛合金等温多向锻造晶粒细化机理与力学性能[J]. 中国有色金属学报, 2019, 29(11):2515-2523. JI X H, LI P, SHI Y B, et al. Grain refinement mechanism and mechanical properties of TA15 alloy during multi-directional isothermal forging[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(11):2515-2523(in Chinese).
[19] ZHANG Z X, QU S J, FENG A H, et al. Achieving grain refinement and enhanced mechanical properties in Ti-6Al-4V alloy produced by multidirectional isothermal forging[J]. Materials Science and Engineering:A, 2017, 692:127-138.
[20] ZHANG R, WANG D J, HUANG L J, et al. Deformation behaviors and microstructure evolution of TiBw/TA15 composite with novel network architecture[J]. Journal of Alloys and Compounds, 2017, 722:970-980.
[21] KERMANPUR A, LEE P D, MCLEAN M, et al. Integrated modeling for the manufacture of aerospace discs:Grain structure evolution[J]. JOM, 2004, 56(3):72-78.
[22] QUAN G Z, LUO G C, LIANG J T, et al. Modelling for the dynamic recrystallization evolution of Ti-6Al-4V alloy in two-phase temperature range and a wide strain rate range[J]. Computational Materials Science, 2015, 97:136-147.
[23] WANG B F, WANG X Y, LI J. Formation and microstructure of ultrafine-grained titanium processed by multi-directional forging[J]. Journal of Materials Engineering and Performance, 2016, 25(6):2521-2527.
文章导航

/