电子电气工程与控制

一种基于攻击时间和角度控制的协同制导方法

  • 唐杨 ,
  • 祝小平 ,
  • 周洲 ,
  • 严飞
展开
  • 1. 西北工业大学 无人机特种技术重点实验室, 西安 710065;
    2. 西北工业大学 无人机研究所, 西安 710065;
    3. 西北工业大学 航空学院, 西安 710072

收稿日期: 2020-10-08

  修回日期: 2020-12-15

  网络出版日期: 2020-12-14

Cooperative guidance method based on impact time and angle control

  • TANG Yang ,
  • ZHU Xiaoping ,
  • ZHOU Zhou ,
  • YAN Fei
Expand
  • 1. National Key Laboratory of Science and Technology on UAV, Northwestern Polytechnical University, Xi’an 710065, China;
    2. UAV Research Institute, Northwestern Polytechnical University, Xi’an 710065, China;
    3. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

Received date: 2020-10-08

  Revised date: 2020-12-15

  Online published: 2020-12-14

摘要

自杀式攻击型无人机在强对抗条件下为从不同方向对目标实施同时攻击,需要采用多机协同制导方法,为此提出了一种基于攻击时间和角度控制的协同制导律。首先设计了一种带有辅助阶段的两阶段制导律,通过引入辅助阶段制导增强了两阶段制导律的时间控制能力。在此基础上,对带有辅助阶段的两阶段制导律的切换条件作出适当修改以同时控制攻击时间和角度。当期望的攻击时间和角度在合理区间内取值时,制导过程始终满足无人机的加速度约束和导引头的视场约束,该方法可用于实现多机协同攻击。最后通过数值仿真验证了所提算法的性能。

本文引用格式

唐杨 , 祝小平 , 周洲 , 严飞 . 一种基于攻击时间和角度控制的协同制导方法[J]. 航空学报, 2022 , 43(1) : 324844 -324844 . DOI: 10.7527/S1000-6893.2020.24844

Abstract

Suicide-attack UAVs need to adopt cooperative guidance to simultaneously attack the target from different directions under strong confrontation conditions. Therefore, a cooperative guidance law based on impact time and angle control is proposed. Firstly, an auxiliary phase is introduced to a two-phase guidance law to enhance its time control ability. On this basis, the switching conditions of the two-phase guidance law with an auxiliary phase are modified to simultaneously control the impact time and angle. With the desired impact time and angle taken within their permissible sets, the constraints on the acceleration and field-of-view will be satisfied during the engagement with the proposed algorithms, which can be used to realize cooperative guidance. Finally, the effectiveness of the methodology is verified by numerical simulations.

参考文献

[1] JEON I S, LEE J I, TAHK M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology, 2006, 14(2): 260-266.
[2] JEON I S, LEE J I, TAHK M J. Impact-time-control guidance with generalized proportional navigation based on nonlinear formulation[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(8): 1885-1890.
[3] TANG Y, ZHU X P, ZHOU Z, et al. Two-phase guidance law for impact time control under physical constraints[J]. Chinese Journal of Aeronautics, 2020, 33(11): 2946-2958.
[4] JEON I S, LEE J I. Impact-time-control guidance law with constraints on seeker look angle[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5): 2621-2627.
[5] TSALIK R, SHIMA T. Circular impact-time guidance[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(8): 1836-1847.
[6] KIM T H, PARK B G, TAHK M J. Bias-shaping method for biased proportional navigation with terminal-angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(6): 1810-1816.
[7] LEE C H, KIM T H, TAHK M J. Interception angle control guidance using proportional navigation with error feedback[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(5): 1556-1561.
[8] TEKIN R, ERER K S. Switched-gain guidance for impact angle control under physical constraints[J]. Journal of Guidance, Control, and Dynamics, 2014, 38(2): 205-216.
[9] MANCHESTER I R, SAVKIN A V. Circular navigation guidance law for precision missile/target engagements[C]//Proceedings of the 41st IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2002: 1287-1292.
[10] 张宽桥, 杨锁昌, 李宝晨, 等. 考虑驾驶仪动态特性的固定时间收敛制导律[J]. 航空学报, 2019, 40(11): 323227. ZHANG K Q, YANG S C, LI B C, et al. Fixed-time convergent guidance law considering autopilot dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 323227(in Chinese).
[11] LEE J I, JEON I S, TAHK M J. Guidance law to control impact time and angle[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 301-310.
[12] KIM T H, LEE C H, JEON I S, et al. Augmented polynomial guidance with impact time and angle constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2806-2817.
[13] TAHK M J, SHIM S W, HONG S M, et al. Impact time control based on time-to-go prediction for sea-skimming antiship missiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 2043-2052.
[14] SHIM S W, HONG S M, MOON G H, et al. Impact angle and time control guidance under field-of-view constraints and maneuver limits[J]. International Journal of Aeronautical and Space Sciences, 2018, 19(1): 217-226.
[15] ZHANG Y A, WANG X L, MA G X. Impact time control guidance law with large impact angle constraint[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(11): 2119-2131.
[16] CHEN X T, WANG J Z. Optimal control based guidance law to control both impact time and impact angle[J]. Aerospace Science and Technology, 2019, 84: 454-463.
[17] 李斌, 林德福, 何绍溟, 等. 基于最优误差动力学的时间角度控制制导律[J]. 航空学报, 2018, 39(11): 322225. LI B, LIN D F, HE S M, et al. Time and angle control guidance law based on optimal error dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 322225(in Chinese).
[18] 张友根, 张友安. 控制撞击时间与角度的三维导引律: 一种两阶段控制方法[J]. 控制理论与应用, 2010, 27(10): 1429-1434. ZHANG Y G,ZHANG Y A. Three-dimensional guidance law to control impact time and impact angle: A two-stage control approach[J]. Control Theory & Applications, 2010, 27(10): 1429-1434(in Chinese).
[19] HARL N, BALAKRISHNAN S N. Impact time and angle guidance with sliding mode control[J]. IEEE Transactions on Control Systems Technology, 2012, 20(6): 1436-1449.
[20] HU Q L, HAN T, XIN M. New impact time and angle guidance strategy via virtual target approach[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(8): 1755-1765.
[21] 张友安, 梁勇, 刘京茂, 等. 基于轨迹成型的攻击角度与时间控制[J]. 航空学报, 2018, 39(9): 322017. ZHANG Y A, LING Y, LIU J M. et al. Trajectory reshaping based impact angle and time control[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9): 322017(in Chinese).
[22] KIM H G, LEE J Y, KIM H J, et al. Look-angle-shaping guidance law for impact angle and time control with field-of-view constraint[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 1602-1612.
[23] ERER K S, TEKIN R. Impact time and angle control based on constrained optimal solutions[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(10): 2448-2454.
[24] KANG S, TEKIN R, HOLZAPFEL F. Generalized impact time and angle control via look-angle shaping[J]. Journal of Guidance, Control, and Dynamics, 2018, 42(3): 695-702.
[25] CHEN X T, WANG J Z. Two-stage guidance law with impact time and angle constraints[J]. Nonlinear Dynamics, 2019, 95(3): 2575-2590.
文章导航

/