固体力学与飞行器总体设计

联翼布局传感器飞机多目标优化设计

  • 何程 ,
  • 马东立 ,
  • 贾玉红 ,
  • 杨穆清 ,
  • 陈刚
展开
  • 北京航空航天大学 航空科学与工程学院, 北京 100083

收稿日期: 2020-09-17

  修回日期: 2020-11-26

  网络出版日期: 2020-12-14

Multi-objective optimization design for joined-wing SensorCraft

  • HE Cheng ,
  • MA Dongli ,
  • JIA Yuhong ,
  • YANG Muqing ,
  • CHEN Gang
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China

Received date: 2020-09-17

  Revised date: 2020-11-26

  Online published: 2020-12-14

摘要

针对联翼布局传感器飞机的任务需求特点,建立了专用于该类无人机的能够综合考虑气动、结构和雷达性能的多目标优化设计模型。利用改进的类函数/形函数参数化方法完成整机外形进行参数化,利用风洞试验进行了气动分析模型的验证,基于工程梁理论搭建了联翼布局结构重量估算模型。在雷达距离方程的基础上,建立了机翼内部雷达天线性能估算的数学模型。利用该模型,能够在优化过程中考虑到内置机载预警天线安装位置和性能评估对翼型选择、结构重量和气动特性的影响,最终得到全局最优设计。对某方案的优化结果表明,相较于优化前,多目标优化结果能够明显提升整机升阻比和前后视雷达探测范围,同时减轻结构重量。优化结果和敏感性分析表明了该多目标优化模型的可行性和必要性。

本文引用格式

何程 , 马东立 , 贾玉红 , 杨穆清 , 陈刚 . 联翼布局传感器飞机多目标优化设计[J]. 航空学报, 2021 , 42(12) : 224761 -224761 . DOI: 10.7527/S1000-6893.2020.24761

Abstract

A multi-objective optimization design model comprehensively considering aerodynamics, structure, and radar performance is proposed to meet the special mission demand of the joined-wing SensorCraft. The improved class function/shape function transformation method is used to complete the shape parameterization, the wind tunnel test performed to verify the aerodynamic analysis model, and the structural weight estimation model of the joined-wing configuration built based on the engineering beam theory. Moreover, based on the radar distance equation, a mathematical model for performance estimation of the antenna inside the wing is established. Using this model, the influence of the installation position and performance evaluation of the embedded antenna on the airfoil selection, structural weight and aerodynamic characteristics can be considered during the optimization process, and the global optimal design is finally obtained. The optimization results of a case show that, compared with the original design, the multi-objective optimization results can significantly improve the lift-to-drag ratio and detection range, meanwhile reducing the structural weight. The optimization results and sensitivity analysis verify the feasibility and necessity of this multi-objective optimization model.

参考文献

[1] MARTINEZ J, FLICK P, PERDZOCK J, et al. An overview of SensorCraft capabilities and key enabling technologies[C]//26th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2008:7185.
[2] LUCIA D. The SensorCraft configurations:A non-linear AeroServoElastic challenge for aviation[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2005:1943.
[3] WOLKOVITCH J. Joined wing aircraft:US3942747[P]. 1976-03-09.
[4] WOLKOVITCH J. The joined wing-An overview[J]. Journal of Aircraft, 1986, 23(3):161-178.
[5] SAMUELS M F. Structural weight comparison of a joined wing and a conventional wing[J]. Journal of Aircraft, 1982, 19(6):485-491.
[6] MIURA H, SHYU A T, WOLKOVITCH J. Parametric weight evaluation of joined wings by structural optimization[J]. Journal of Aircraft, 1988, 25(12):1142-1149.
[7] SMITH S, CLIFF S, KROO I. The design of a joined wing flight demonstrator aircraft[C]//Aircraft Design, Systems and Operations Meeting. Reston:AIAA, 1987:2930.
[8] OLIGNEY B, FRASH M, YECHOUT T. Aerodynamic evaluation and optimization of the houck joined wing aircraft[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2008:1422.
[9] PÉREZ-ÁLVAREZ J, CUERNO-REJADO C, MESEGUER J. Aerodynamic parametric analysis of an unconventional joined-wing aircraft configuration[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2016, 230(10):1917-1933.
[10] 潘家正, 郭小良, 吕庆风. 联接翼布局低速纵向气动特性初探[J]. 南京航空航天大学学报, 1992, 24(1):81-87. PAN J Z, GUO X L,LU Q F. An approach to the low-speed longitudinal aerodynamic characteristics of the joined wing configuration[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1992, 24(1):81-87(in Chinese).
[11] 邓彦敏, 胡继忠. 连翼机低速气动特性实验研究[J]. 航空学报, 1992, 13(4):118-123. DANG Y M, HU J Z. An experimental research of lowspeed aerodynamic characteristics on joined wing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 1992, 13(4):118-123(in Chinese).
[12] LIVNE E. Aeroelasticity of joined-wing airplane configurations-Past work and future challenges-A survey[C]//19th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2001:1370.
[13] SCHWARTZ J, CANFIELD R, BLAIR M. Aero-structural coupling and sensitivity of a joined-wing SensorCraft[C]//44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2003:1580.
[14] CAVALLARO R, DEMASI L. Challenges, ideas, and innovations of joined-wing configurations:A concept from the past, an opportunity for the future[J]. Progress in Aerospace Sciences, 2016, 87:1-93.
[15] ANDREWS S A, PEREZ R E. Comparison of box-wing and conventional aircraft mission performance using multidisciplinary analysis and optimization[J]. Aerospace Science and Technology, 2018, 79:336-351.
[16] REICH G W, RAVEH D E, ZINK P S. Application of active-aeroelastic-wing technology to a joined-wing sensorcraft[J]. Journal of Aircraft, 2004, 41(3):594-602.
[17] SMALLWOOD B, CANFIELD R, TERZUOLI A. Structurally integrated antennas on a joined-wing aircraft[C]//44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2003:1459.
[18] 张新苗. 传感器飞机机翼形变对共形雷达系统性能的影响研究[J]. 兵器装备工程学报, 2019, 40(7):1-4. ZHANG X M. Research of influence of airfoil deformation on performance of conformal radar system on sensor aircraft[J]. Journal of Ordnance Equipment Engineering, 2019, 40(7):1-4(in Chinese).
[19] 孙俊磊, 王和平, 周洲, 等. 基于天线安装的菱形翼无人机翼型优化设计[J]. 航空学报, 2017, 38(11):121072. SUN J L, WANG H P, ZHOU Z, et al. Aerodynamic optimization design of diamond-wing configuration UAV airfoil based on radar antenna installation[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11):121072(in Chinese).
[20] YE K Q. Orthogonal column Latin hypercubes and their application in computer experiments[J]. Journal of the American Statistical Association, 1998, 93(444):1430-1439.
[21] MARTIN J D, SIMPSON T W. Use of kriging models to approximate deterministic computer models[J]. AIAA Journal, 2005, 43(4):853-863.
[22] CEZE M, HAYASHI M, VOLPE E. A study of the CST parameterization characteristics[C]//27th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2009:3767.
[23] BECKER G, SCHÄFER M, JAMESON A. An advanced NURBS fitting procedure for post-processing of grid-based shape optimizations[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011:891.
[24] HICKS R M. An evaluation of three two-dimensional computational fluid dynamics codes including low Reynolds numbers and transonic Mach numbers[M].Moffett Field:NASA Ames Research Center,1991.
[25] MA D L, LI G X, YANG M Q, et al. Research of the suction flow control on wings at low Reynolds numbers[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018, 232(8):1515-1528.
[26] TORENBEEK E. Development and application of a comprehensive, design-sensitive weight prediction method for wing structures of transport category aircraft:Report LR-693[R]. Delft:Delft University of Technology, 1992.
[27] NORTON K A, OMBERG A C. The maximum range of a radar set[J]. Proceedings of the IRE, 1947, 35(1):4-24.
[28] 曹晨. 机载相控阵PD雷达性能分析中的重要问题[J]. 现代雷达, 2008, 30(6):14-16. CAO C. Problems in airborne phased-array PD radar performance analysis[J]. Modern Radar, 2008, 30(6):14-16(in Chinese).
[29] MARCUM J. A statistical theory of target detection by pulsed radar[J]. IRE Transactions on Information Theory, 1960, 6(2):59-267.
[30] BLAKE L V. Recent advancements in basic radar range calculation technique[J]. IRE Transactions on Military Electronics, 1961, MIL-5(2):154-164.
文章导航

/