先进制造技术与装备专栏

ZrO2陶瓷切向超声辅助磨削表面及亚表面损伤机制

  • 闫艳燕 ,
  • 张亚飞 ,
  • 张兆顷
展开
  • 河南理工大学 机械与动力工程学院, 焦作 454003

收稿日期: 2020-09-14

  修回日期: 2020-10-09

  网络出版日期: 2020-12-14

基金资助

国家自然科学基金(51575163)

Surface and subsurface damage mechanisms in tangential ultrasonic-assisted grinding of ZrO2 ceramics

  • YAN Yanyan ,
  • ZHANG Yafei ,
  • ZHANG Zhaoqing
Expand
  • School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China

Received date: 2020-09-14

  Revised date: 2020-10-09

  Online published: 2020-12-14

Supported by

National Natural Science Foundation of China (51575163)

摘要

为进一步揭示切向超声辅助磨削过程中硬脆材料的表面及亚表面损伤机理,基于应变率模型对其磨削过程中材料的动态力学性能进行分析,并在此基础上建立了硬脆材料的脆-塑转变临界切削深度模型与微裂纹损伤深度模型。研究发现,脆-塑转变临界切削深度和微裂纹损伤深度均与应变率有关,其中临界切削深度随着应变率的增加而增加,而横向裂纹损伤深度与中位裂纹损伤深度均随应变率的增加而减小。通过ZrO2陶瓷切向超声辅助磨削试验进行验证。试验结果表明:由于切向超声振动的引入提高了材料应变率,进而提高了材料的动态断裂应力以及动态断裂韧性,从而扩大了ZrO2陶瓷的塑性域去除范围,降低了加工表面的横向裂纹与中位裂纹损伤深度,使得ZrO2陶瓷的表面及亚表面质量得到明显改善。试验结果与理论分析相一致,为进一步揭示切向超声辅助磨削过程中硬脆材料的表面及亚表面微观损伤机理提供了理论参考。

本文引用格式

闫艳燕 , 张亚飞 , 张兆顷 . ZrO2陶瓷切向超声辅助磨削表面及亚表面损伤机制[J]. 航空学报, 2021 , 42(7) : 624749 -624749 . DOI: 10.7527/S1000-6893.2020.24749

Abstract

To further reveal the surface damage and subsurface damage mechanisms of hard-brittle materials in Tangential Ultrasonic-Assisted Grinding (TUAG), the dynamic mechanical properties of the hard-brittle materials during TUAG are analyzed based on the strain rate model. On this basis, the brittle-ductile transition’s critical cutting depth and the crack depth for hard-brittle materials in TUAG are obtained. The study found that the critical cutting depth and the crack depth are related to the strain rate. The critical cutting depth increases with the increase of the strain rate, and both the transverse crack depth and the median crack depth decrease with the increase of strain rate. Grinding test of ZrO2 ceramics was conducted to verify the theoretical analysis. The test results show that due to the introduction of tangential ultrasonic vibration,the strain rate of the material increases, which then improves the dynamic fracture stress and dynamic fracture toughness of the material. As a result, the plastic removal range of ZrO2 ceramics was increased, the depth of transverse crack and mediate crack were reduced, and the surface and subsurface quality of ZrO2 ceramics was significantly improved. The test results are consistent with the theoretical analysis. This study provides a theoretical reference for further revelation of the surface and subsurface damage mechanisms of hard-brittle materials in TUAG.

参考文献

[1] WAN L L, LI L, DENG Z H, et al. Thermal-mechanical coupling simulation and experimental research on the grinding of zirconia ceramics[J]. Journal of Manufacturing Processes, 2019, 47:41-51.
[2] 卞红,胡胜鹏,宋晓国,等. 钎焊温度对Ti60/AgCu/ZrO2接头界面组织及性能的影响[J]. 航空学报, 2017, 38(12):421402. BIAN H, HU S P, SONG X G. et al. Effect of brazing temperature on interfacial microstructure and mechanical property of Ti60/AgCu/ZrO2 joint[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):421402(in Chinese).
[3] YANG M, LI C H, ZHANG Y B, et al. Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions[J]. Ceramics International, 2019, 45(12):14908-14920.
[4] 任永国,刘自强,杨凯,等. 氧化锆材料种类及应用[J]. 中国陶瓷, 2008, 44(4):44-46. REN Y G, LIU Z Q, YANG K, et al. Kind andapplication of zirconia material[J]. China Ceramics, 2008, 44(4):44-46(in Chinese).
[5] 侯永改,田久根,路继红,等. 氧化锆陶瓷磨削加工的研究现状[J]. 中国陶瓷, 2014, 50(9):6-9. HOU Y G, TIAN J G, LU J H, et al. Thecurrent research status of zirconia ceramics grinding[J]. China Ceramics, 2014, 50(9):6-9(in Chinese).
[6] YANG M, LI C H, ZHANG Y B, et al. Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions[J]. International Journal of Machine Tools and Manufacture, 2017, 122:55-65.
[7] 张能. 纵扭复合振动超声磨削加工工程氧化锆陶瓷机理及工艺研究[D]. 广州:广东工业大学, 2018:1-5. ZHANG N. Study on mechanism and technology of zirconia ceramics with longitudinal-torsional composite vibration ultrasonic grinding machining[D]. Guangzhou:Guangdong University of Technology Guangzhou, 2018:1-5(in Chinese).
[8] XIAO X Z, ZHENG K, LIAO W H, et al. Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics[J]. International Journal of Machine Tools and Manufacture, 2016, 104:58-67.
[9] YANG Z C, ZHU L D, LIN B, et al. The grinding force modeling and experimental study of ZrO2 ceramic materials in ultrasonic vibration assisted grinding[J]. Ceramics International, 2019, 45(7):8873-8889.
[10] 吴雁,孙爱国,赵波,等. Al2O3/ZrO2(n)微-纳米复合陶瓷超声振动精密磨削表面微观特征试验研究[J]. 航空学报, 2007, 28(4):1009-1013. WU Y, SUN A G, ZHAO B, et al. Study on Surface Integrity of Ultrasonic Vibration Grinding for Al2O3/ZrO2(n) Micro-nanocomposites[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4):1009-1013(in Chinese).
[11] CHEN L, ZHANG F H, MENG B B, et al. Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics[J]. Ceramics International, 2017, 43(3):2981-2993.
[12] ZAHEDI A, TAWAKOLI T, AKBARI J. Energy aspects and workpiece surface characteristics in ultrasonic-assisted cylindrical grinding of alumina-zirconia ceramics[J]. International Journal of Machine Tools and Manufacture, 2015, 90:16-28.
[13] GUO B, ZHAO Q. Ultrasonic vibration assisted grinding of hard and brittle linear micro-structured surfaces[J]. Precision Engineering, 2017, 48:98-106.
[14] BARAHENI M, AMINI S. Predicting subsurface damage in silicon nitride ceramics subjected to rotary ultrasonic assisted face grinding[J]. Ceramics International, 2019, 45(8):10086-10096.
[15] GAO T, ZHANG X P, LI C H, et al. Surface morphology evaluation of multi-angle 2D ultrasonic vibration integrated with nanofluid minimum quantity lubrication grinding[J]. Journal of Manufacturing Processes, 2020, 51:44-61.
[16] JIA D, LI C H, ZHANG Y, et al. Experimental evaluation of surface topographies of NMQL grinding ZrO2 ceramics combining multiangle ultrasonic vibration[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(1-4):457-473.
[17] CHEN J B, FANG Q H, WANG C C, et al. Theoretical study on brittle-ductile transition behavior in elliptical ultrasonic assisted grinding of hard brittle materials[J]. Precision Engineering, 2016, 46:104-117.
[18] LV D X, HUANG Y H, WANG H X, et al. Improvement effects of vibration on cutting force in rotary ultrasonic machining of BK7 glass[J]. Journal of Materials Processing Technology, 2013, 213(9):1548-1557.
[19] 梁志强,田梦,王秋燕,等. 超声辅助磨削陶瓷材料的裂纹产生与扩展仿真研究[J]. 兵工学报, 2016, 37(5):895-902. LIANG Z Q, TIAN M, WANG Q Y, et al. Simulation investigation on crack initiation and propagation in ultrasonic assisted grinding of ceramics material[J]. Acta Armamentarii, 2016, 37(5):895-902(in Chinese).
[20] XU H H K,JAHANMIR S,IVES L K. Effect of grinding on strength of tetragonal zirconia and zirconia-toughened alumina[J]. Machining Science and Technology, 1997, 1(1):49-66.
[21] WANG B, LIU Z Q, SU G S, et al. Investigations of critical cutting speed and ductile-to-brittle transition mechanism for workpiece material in ultra-high speed machining[J]. International Journal of Mechanical Sciences, 2015, 104:44-59.
[22] JOHNSON G R, HOLMQUIST T J, BEISSEL S R. Response of aluminum nitride (including a phase change) to large strains, high strain rates, and high pressures[J]. Journal of Applied Physics, 2003, 94(3):1639-1646.
[23] LI K N, WANG Y W, ZHAO Y J, et al. High strain rate of quartz glass and its effects during high-speed dicing[J]. Ceramics International, 2019, 45(10):13523-13529.
[24] GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society. A:Mathematical, Physical and Engineering Sciences, 1921:163-198.
[25] 闫艳燕. 纳米复相陶瓷二维超声振动辅助磨削机理及其表面质量研究[D]. 上海:上海交通大学,2008:57-58. YAN Y Y. Study on two dimensional ultrasonic vibration assisted grinding mechanism of nanocomposite ceramics and its surface quality[D]. Shanghai:Shanghai Jiao Tong University, 2008:57-58(in Chinese).
[26] SOLHTALAB A, ADIBI H, ESMAEILZARE A, et al. Cup wheel grinding-induced subsurface damage in optical glass BK7:An experimental, theoretical and numerical investigation[J]. Precision Engineering, 2019, 57:162-175.
[27] LI S Y, WANG Z, WU Y L. Relationship between subsurface damage and surface roughness of ground optical materials[J]. Journal of Central South University of Technology, 2007, 14(4):546-551.
[28] BARAHENI M, AMINI S. Predicting subsurface damage in silicon nitride ceramics subjected to rotary ultrasonic assisted face grinding[J]. Ceramics International, 2019, 45(8):10086-10096.
[29] GU W B, YAO Z Q, LI H L. Investigation of grinding modes in horizontal surface grinding of optical glass BK7[J]. Journal of Materials Processing Technology, 2011, 211(10):1629-1636.
[30] ZHANG B,YIN J F. The "skin effect" of subsurface damage distribution in materials subjected to high-speed machining[J]. International Journal of Extreme Manufacturing. 2019, 1:012007.
文章导航

/