固体力学与飞行器总体设计

太阳能无人机能源系统的多维耦合建模

  • 高明 ,
  • 余伟臣 ,
  • 王杉杉 ,
  • 王荣闯 ,
  • 石健将
展开
  • 浙江大学 电气工程学院, 杭州 310027

收稿日期: 2020-06-24

  修回日期: 2020-11-26

  网络出版日期: 2020-12-14

基金资助

国家自然科学基金(52077199);装备预研教育部联合基金(6141A02022528)

Multidimensional coupled modeling for solar powered UAV energy system

  • GAO Ming ,
  • YU Weichen ,
  • WANG Shanshan ,
  • WANG Rongchuang ,
  • SHI Jianjiang
Expand
  • College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

Received date: 2020-06-24

  Revised date: 2020-11-26

  Online published: 2020-12-14

Supported by

National Natural Science Foundation of China (52077199);Joint Foundation of the Ministry of Education for Equipment Pre-research (6141A02022528)

摘要

针对太阳能无人机能源系统建模的耦合性考虑不足、能量流动过程描述不全面等问题,将外部大气环境、无人机的姿态角度等不同维度下影响能源系统运行的多个因素纳入到建模过程中,先后给出了非均质大气环境模型、无人机运动模型、电机模型、减速器模型、螺旋桨模型、光伏电池模型和蓄电池模型的建立过程,并建立了各模型间的耦合关系,得到反映非均质大气环境下、动态飞行行为的太阳能无人机中能量流动的耦合模型。仿真结果表明:该模型可以完整的描述外部大气环境和无人机飞行姿态对无人机发电功率以及动力负荷功率的影响等耦合作用,适合用于仿真分析和地面半实物仿真平台的搭建。

本文引用格式

高明 , 余伟臣 , 王杉杉 , 王荣闯 , 石健将 . 太阳能无人机能源系统的多维耦合建模[J]. 航空学报, 2021 , 42(7) : 224461 -224461 . DOI: 10.7527/S1000-6893.2020.24461

Abstract

Considering the lack of coupling in the energy system modeling of solar powered Unmanned Aerial Vehicles (UAVs) and the incomplete description of energy flow process, this paper introduces multiple factors affecting the operation of the energy system in different dimensions such as the external atmospheric environment and UAV attitude angle, into the modeling process. The modeling process of the heterogeneous atmospheric environment model, the aircraft motion model, the motor model, the decelerator model, the propeller model, the photo-voltaic cell model and the battery model are presented successively. Meanwhile, the coupling relationships among the models are established to obtain the coupling model reflecting the dynamic flight behavior in inhomogeneous atmospheric environments. Simulation results show that the coupling model can comprehensively describe the coupled effects, such as the influence of the external atmospheric environment and the UAV attitude angle on the generated power and dynamic load power, and that the coupling model proposed is suitable for simulation analysis and construction of the ground hardware-in-the-loop simulation platform.

参考文献

[1] 马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3):623418. MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):623418(in Chinese).
[2] UAS VISION. Microlink devices solar sheet powers airbus Zephyr S HAPS solar aircraft[EB/OL]. (2018-10-22)[2020-06-24]. https://www.uasvision.com/2018/10/22/microlink-devices-solar-sheet-powers-airbus-zep-hyr-s-haps-solar-aircraft/.
[3] DIAB-MARZOUK A, TRESCASES O. SiC-based bidirectional CUK converter with differential power processing and MPPT for a solar powered aircraft[J]. IEEE Transactions on Transportation Electrification, 2015, 1(4):369-381.
[4] 呼文韬, 张丹红, 刘敏娟, 等. 一种太阳能无人机用MPPT控制器[J]. 电源技术, 2016, 40(10):1961-1964. HU W T, ZHANG D H, LIU M J, et al. Research on a MPPT controller suitable for solar UAV[J]. Chinese Journal of Power Sources, 2016, 40(10):1961-1964(in Chinese).
[5] 朱立宏, 孙国瑞, 呼文韬, 等. 太阳能无人机能源系统的关键技术与发展趋势[J]. 航空学报, 2020, 41(3):623503. ZHU L H, SUN G R, HU W T, et al. Key technology and development trend of energy system in solar powered unmanned aerial vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):623503(in Chinese).
[6] NOTH A. Design of solar powered airplanes for continuous flight[D]. Zurich:Swiss Federal Institute of Technology Zurich, 2008:1-18.
[7] SINEGLAZOV V M, KARABETSKY D P. Energy system design of solar aircraft[C]//2013 IEEE 2nd International Conference Actual Problems of Unmanned Air Vehicles Developments Proceedings (APUAVD). Piscataway:IEEE Press, 2013:9-11.
[8] 焦黎明, 徐伟强. 太阳能/氢能长航时无人机重量能量耦合分析[J]. 太阳能学报, 2020, 41(2):152-157. JIAO L M, XU W Q. Weight energy coupling analysis for solar hydrogen long-endurance uav[J]. Acta Energiae Solaris Sinica, 2020, 41(2):152-157(in Chinese).
[9] RAJENDRAN P, SMITH H. Implications of longitude and latitude on the size of solar-powered UAV[J]. Energy Conversion and Management, 2015, 98:107-114.
[10] 朱炳杰, 杨宇丹, 杨希祥, 等. 太阳能飞行器能源昼夜闭环仿真分析[J]. 宇航学报, 2019, 40(8):878-886. ZHU B J, YANG Y D, YANG X X, et al. Energy closed-loop simulation and analysis for solar powered aircraft round the clock[J]. Journal of Astronautics, 2019, 40(8):878-886(in Chinese).
[11] 张晓辉, 刘莉, 戴月领. 燃料电池无人机能源管理与飞行状态耦合[J]. 航空学报, 2019, 40(7):222793. ZHANG X H, LIU L, DAI Y L. Coupling effect of energy management and flight state for fuel cell powered UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):222793(in Chinese).
[12] ZHANG X H, LIU L, DAI Y L. Fuzzy state machine energy management strategy for hybrid electric UAVs with PV/fuel cell/battery power system[J]. International Journal of Aerospace Engineering, 2018, 2018:1-16.
[13] 刘莉, 杜孟尧, 张晓辉, 等. 太阳能/氢能无人机总体设计与能源管理策略研究[J]. 航空学报, 2016, 37(1):144-162. LIU L, DU M Y, ZHANG X H, et al. Conceptual design and energy management strategy for UAV with hybrid solar and hydrogen energy[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):144-162(in Chinese).
[14] 金鑫, 肖文波, 叶国敏, 等. 飞行状态对太阳能飞机中组件性能的影响[J]. 航空学报, 2020, 41(10):223851. JIN X, XIAO W B, YE G M, et al. Effect of flight state parameters of solar aircraft on photovoltaic module performance[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10):223851(in Chinese).
[15] 曾理. 关于不同海拔的太阳辐射计算[D]. 合肥:中国科学技术大学, 2015:9-10. ZENG L. Solar radiation calculation methods in different altitudes[D]. Hefei:University of Science and Technology of China, 2015:9-10. (in Chinese)
[16] 张峰, 吴东岩, 胥文, 等. 飞行仿真中基于FLUENT气动系数计算的应用研究[J]. 系统仿真技术, 2013, 9(2):167-169, 174. ZHANG F, WU D Y, XU W, et al. Research on aerodynamic coefficients Calculation Based on fluent in FLUENT simulation[J]. System Simulation Technology, 2013, 9(2):167-169, 174(in Chinese).
[17] 马丁·西蒙斯. 模型飞机空气动力学[M]. 肖治垣, 马东立译. 北京:航空工业出版社, 2007:8-15. Martin S. Model aircraft aerodynamics[M]. XIAO Z Y, MA D L, translated. Beijing:Aviation Industry Press, 2007:8-15.
[18] 卢平. 战斗机飞行模拟器视景系统仿真研究[D]. 长春:吉林大学, 2007:26-29. LU P. Research on visual simulation system of flight simulator[D]. Changchun:Jilin University, 2007:26-29. (in Chinese)
[19] 马晓平, 宋笔锋. 提高小型无人机螺旋桨效率的工程方法[J]. 西北工业大学学报, 2004, 22(2):209-212. MA X P, SONG B F. Practical measures for raising propeller efficiency of low speed mini UAV[J]. Journal of Northwestern Polytechnical University, 2004, 22(2):209-212(in Chinese).
[20] 潘学萍, 张源, 鞠平, 等. 太阳能光伏电站等效建模[J]. 电网技术, 2015, 39(5):1173-1178. PAN X P, ZHANG Y, JU P, et al. Equivalent modeling for photovoltaic power station[J]. Power System Technology, 2015, 39(5):1173-1178(in Chinese).
[21] 郑岳久. 车用锂离子动力电池组的一致性研究[D]. 北京:清华大学, 2014:39-40. ZHENG Y J. Study on cell variations of lithium ion power battery packs in electric vehicles[D]. Beijing:Tsinghua University, 2014:39-40(in Chinese).
[22] DWIVEDI V S, PATRIKAR J, ADDAMANE A, et al. MARAAL:A low altitude long endurance solar powered UAV for surveillance and mapping applications[C]//2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR). Piscataway:IEEE Press, 2018:449-454.
[23] 张君君, 吴红飞, 葛红娟, 等. 一种基于三端口变换器的航天器分布式供电系统[J]. 中国电机工程学报, 2015, 35(24):6459-6466. ZHANG J J, WU H F, GE H J, et al. A distributed power system with modular three-port converters for spacecraft[J]. Proceedings of the CSEE, 2015, 35(24):6459-6466(in Chinese).
文章导航

/