材料工程与机械制造

碳纤维/双马树脂复合材料整体成型过程分层扩展行为实验研究

  • 王雪明 ,
  • 谢富原
展开
  • 1. 中航复合材料有限责任公司 复合材料检测技术中心, 北京 101300;
    2. 合肥工业大学 工业与装备技术研究院, 合肥 230009

收稿日期: 2020-10-23

  修回日期: 2020-11-20

  网络出版日期: 2020-12-08

基金资助

中航复合材料有限责任公司创新基金(GC732011601)

Experimental study on behavior of delamination propagation of carbon fiber/bismaleimide composites during integral forming process

  • WANG Xueming ,
  • XIE Fuyuan
Expand
  • 1. Composite Test Technology Center, AVIC Composite Corporation LTD, Beijing 101300, China;
    2. Institute of Industrial and Equipment Technology, Hefei University of Technology, Hefei 230009, China

Received date: 2020-10-23

  Revised date: 2020-11-20

  Online published: 2020-12-08

Supported by

Innovation Funding from AVIC Composite Corporation LTD (GC732011601)

摘要

针对复合材料构件热压罐成型过程中常见的分层缺陷,考察了整体成型工艺温度对分层扩展、QY8911双马树脂基体韧性及T300/QY8911层合板Ⅰ型层间断裂韧性的影响,并通过分层扩展断面形貌深入分析了复合材料整体成型工艺中分层扩展的路径和断面破坏模式,给出了复合材料整体成型工艺和结构设计的优化建议措施。结果表明,随着整体成型最高温度的升高,分层扩展程度增大,QY8911双马树脂基体的拉伸强度和拉伸模量逐渐降低,T300/QY8911层合板Ⅰ型层间断裂韧性逐渐增大;对分层扩展断面进行SEM扫描电镜分析发现分层扩展沿着层间开裂,断面内存在基体断裂和基体/纤维界面脱粘两种破坏模式,Ⅰ型层间断裂是复合材料整体成型工艺中分层扩展的典型微观特征。

本文引用格式

王雪明 , 谢富原 . 碳纤维/双马树脂复合材料整体成型过程分层扩展行为实验研究[J]. 航空学报, 2021 , 42(2) : 424918 -424918 . DOI: 10.7527/S1000-6893.2020.24918

Abstract

To overcome the problem of frequent delamination in the autoclave process of composite components, the influence of temperature in integral forming process on delamination propagation, toughness of QY8911 bismaleimide matrix and toughness of mode Ⅰ interlaminar fracture toughness of T300/QY8911 laminates were investigated. The path of delamination propagation and the failure mode of fracture surface in the integral forming process of composites were analyzed according to the morphology of delamination propagation section. The optimization measures for integral forming process and structural design of composites were also given. The results show that with the increase of the highest temperature of the integral forming process, delamination propagation increases, the tensile strength and modulus of QY8911 bismaleimide matrix decrease gradually and the GⅠC of T300/QY8911 laminates increase gradually. SEM analysis of the delamination propagation section shows that delamination propagates along the interlaminar crack of laminates, and there are two failure modes in the delamination propagation section: matrix fracture and matrix/fiber interface debonding. Mode Ⅰ interlaminar fracture is a typical microscopic characteristic of delamination propagation in the integral forming process of composites.

参考文献

[1] 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8):2773-2797. GU Y Z, LI M, LI Y X, et al. Progress on manufacturing technology and progress theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2773-2797(in Chinese).
[2] 黎昊. 含分层损伤的复合材料层压板轴压剩余强度分析[J]. 飞机设计, 2020, 40(3):30-34. LI H. Residual strength analysis of composite laminates with delamination damage under axial compression[J]. Aircraft Design, 2020, 40(3):30-34(in Chinese).
[3] 许洪明, 温卫东, 刘芳. 含分层缺陷复合材料层合板压缩强度试验研究[J]. 航空发动机, 2013, 39(3):73-76. XU H M, WEN W D, LIU F. Compressive strength experimentation research on composite laminates layered defect[J]. Aeroengine, 2013, 39(3):73-76(in Chinese).
[4] RICCIO A, SCARAMUZZINO F, PERUGINI P. Embedded delamination growth in composite panels under compressive load[J]. Composites:Part B, 2001, 31:209-218.
[5] STAWIARSKI A, MUC A, BARSKI M. Experimental and numerical studies of laminated plates with delamination subjected to compressive loads[J]. Latin American Journal of Solid and Structures, 2020, 17(5):1-12.
[6] RICCIO A, RUSSO A, SELLITTO A, et al. Influence of manufacturing defects on the mechanical behavior of all-composite wing under service load conditions[J]. Key Engineering Materials, 2017, 754:279-282.
[7] FOTSING E R, LECLERC C, SOLA M, et al. Mechanical properties of composites sandwich structures with core of face sheet discontinuities[J]. Composites Part B:Engineering, 2016, 88:229-239.
[8] RAIMONDO A, FRAGALE S, CAMERLINGO F, et al. Delamination buckling and growth phenomena in stiffened composite panels under compression Part I:An experimental study[J]. Journal of Composite Materials, 2014, 48(23):2843-2855.
[9] MEKONNEN A A, WOO K, KANG M, et al. Post-buckling and delamination propagation behavior of composite laminates with embedded delamination[J]. Journal of Mechanical Science and Technology, 2020, 34(3):1099-1110.
[10] DAVIDSON B D, SEDILES F O. Mixed-mode Ⅰ-Ⅱ-Ⅲ delamination toughness determination via a shear-torsion-bending test[J]. Composite Part A:Applied Science and Manufacturing, 2011, 42(6):589-603.
[11] 陈群志, 关志东, 王进. 分层缺陷对复合材料结构疲劳寿命影响研究[J]. 机械强度, 2004, 26(S1):121-123. CHEN Q Z, GUAN Z D, WANG J. Study on influence of delamination flaw on fatigue life of composite structures[J]. Journal of Mechanical Strength, 2004, 26(S1):121-123(in Chinese).
[12] KUMAR M, KUMAR P, BHADAURIA S S. Interlaminar fracture toughness and fatigue fracture of continuous fiber-reinforced polymer composites with carbon-based nanoreinforcements:A review[J]. Polymer-Plastics Technology and Materials, 2020, 59(10):1041-1076.
[13] 周正干, 孙广开, 陈秀成, 等. 复合材料紧固孔分层激光超声量化表征试验[J]. 航空学报, 2014, 35(8):2348-2354. Zhou Z G, SUN G K, CHEN X C, et al. Quantitative characterization test of fastening hole delamination in composite with laser ultrasonics[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2348-2354(in Chinese).
[14] WANG X M, ZHANG Z G, XIE F Y, et al. Correlated rules between complex structure of composite components and manufacturing defects in autoclave molding technology[J]. Journal of Reinforced Plastics and Composites, 2009, 28(22):2791-2803.
[15] 王雪明, 谢富原, 李敏, 等. 热压罐成型复合材料复杂结构对制造缺陷的影响规律[J]. 航空学报, 2009, 30(4):757-762. WANG X M, XIE F Y, LI M, et al. Effect rules of complex structure on manufacturing defects for composites in autoclave molding[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(4):757-762(in Chinese).
[16] 王雪明, 谢富原. 复合材料构件分层缺陷的概率分析方法与群子理论模型[J]. 航空材料学报, 2013, 33(5):72-76. WANG X M, XIE F Y. Probabilistic analysis method and sub-cluster theory model of delamination for composite components[J]. Journal of Aeronautical Materials, 2013, 33(5):72-76(in Chinese).
[17] XIE F Y, WANG X M, LI M, et al. Statistical study of delamination area distribution in composite components fabricated by autoclave process[J]. Applied Composite Materials, 2009, 16:285-295.
[18] KIM R Y, DONALDSON S L. Experimental and analytical studies on the damage initiation in composite laminates at cryogenic temperatures[J]. Composite Structures, 2006, 76(1):62-66.
[19] RAMANUJAM N, VADDADI P, NAKAMURA T, et al. Interlaminar fatigue crack growth of cross-ply composites under thermal cycles[J]. Composite Structures, 2007, 85(2):175-187.
[20] 王雪明, 谢富原. 复合材料整体成型过程分层扩展实验研究[C]//第21届全国复合材料学术会议. 北京:中国航空学会, 2020:584-589. WANG X M, XIE F Y. Experimental study on delamination propagation of composite laminations in integral forming process[C]//The 21st National Conference on Composites. Beijing:Chinese Society of Aeronautics and Astronautics, 2020:584-589(in Chinese).
[21] 初增泽, 黄鹏程. 环氧树脂的超低温增韧研究[J]. 热固性树脂, 2004, 19(3):1-4. CHU Z Z, HUANG P C. Toughening of epoxy resins at cryogenic temperature[J]. Thermosetting Resin, 2004, 19(3):1-4(in Chinese).
[22] COWLEY K D, BEAUMONT P W B. The interlaminar and intralaminar fracture toughness of carbon-fiber/polymer composites:The effect of temperature[J]. Composite Science and Technology, 1997, 57:1433-1444.
[23] KIM K Y, YE L. Interlaminar fracture toughness of CF/PEI composites at elevated temperature:Role of matrix toughness and fibre/matrix adhesion[J]. Composites Part A:Applied Science and Manufacturing, 2004, 35:477-487.
[24] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 复合材料学报, 2020, 39(1):522509. ZHAO L B, GONG Y, ZHANG J Y. A study on delamination growth behavior in fiber reinforced composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2020, 39(1):522509(in Chinese).
[25] 徐凯龙, 刘璐璐, 赵振华, 等. 循环湿热老化对T700/TDE86碳纤维复合材料层间断裂韧度的影响[J]. 航空材料学报, 2019, 39(4):40-48. XU K L, LIU L L, ZHAO Z H, et al. Effect of cyclic hygrothermal aging on interlaminar fracture toughness of T700/TDE86 carbon composite[J]. Journal of Aeronautical Materials, 2019, 39(4):40-48(in Chinese).
[26] ALESSI S, PITARRESI G, SPADARO G. Effect of hydrothermal ageing on the thermal and delamination fracture behaviour of CFRP composites[J]. Composites Part B:Engineering, 2014, 67(11):145.
[27] 中国航空工业总公司. 碳纤维复合材料层合板Ⅰ型层间断裂韧性GC试验方法:HB 7402-1996[S]. 北京:中国航空工业总公司, 1996. Aviation Industry Corporation of China. Test method for mode Ⅰ interlaminar fracture toughness GC of CFRP laminates:HB 7402-1996[S]. Beijing:Aviation Industry Corporation of China, 1996(in Chinese).
[28] SHOKRIEH M M, HEIDARI-RARANI M. Effect of stacking sequence on R-curve behavior of glass/epoxy DCB laminates with 0°//0° crack interface[J]. Materials Science and Engineering:A, 2011, 529:265-269.
[29] 王雪明, 李韶亮, 谢富原. 热压罐成型复合材料构件曲率半径对制造缺陷的影响规律[J]. 航空材料学报, 2020, 40(6):90-96. WANG X M, LI S L, XIE F Y. Influence of curvature radius in composite components on manufacturing defects in autoclave molding[J]. Journal of Aeronautical Materials, 2020, 40(6):90-96(in Chinese).
文章导航

/