综述

精密复杂曲面零件多轴数控加工技术研究进展

  • 徐金亭 ,
  • 牛金波 ,
  • 陈满森 ,
  • 孙玉文
展开
  • 1. 大连理工大学 汽车工程学院, 大连 116024;
    2. 大连理工大学 机械工程学院, 大连 116024

收稿日期: 2020-10-12

  修回日期: 2020-10-16

  网络出版日期: 2020-12-08

基金资助

国家自然科学基金(91948203,51975097);辽宁省自然科学基金(20180520030,2019-BS-045)

Research progress in multi-axis CNC machining of precision complex curved parts

  • XU Jinting ,
  • NIU Jinbo ,
  • CHEN Mansen ,
  • SUN Yuwen
Expand
  • 1. School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China;
    2. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China

Received date: 2020-10-12

  Revised date: 2020-10-16

  Online published: 2020-12-08

Supported by

National Natural Science Foundation of China (91948203, 51975097); Natural Science Foundation of Liaoning Province (20180520030, 2019-BS-045)

摘要

多轴数控(CNC)加工是现代工业中的标志性加工技术,在能源、动力、国防、运载工具、航空航天等制造领域的关键零部件加工中占据着主导地位。随着这些领域中高端装备性能要求越来越高,涌现出一大批加工难度大、性能指标要求苛刻的精密复杂曲面零件,其加工已由以往单纯的形位精度要求,跃升为形位与性能指标并重的高性能加工要求,给传统的复杂曲面零件数控加工技术带来了严峻挑战。针对精密复杂曲面零件形位精度保证、加工效率提升及动态切削过程可控等关键技术问题,从多轴数控加工的高效加工路径设计、进给率规划以及加工动力学分析等方面,详细论述相关加工技术的研究现状、存在的难点和核心问题,指出可行的解决途径、突破方向和未来的发展趋势,为实现复杂曲面零件的高性能数控加工提供参考和依据。

本文引用格式

徐金亭 , 牛金波 , 陈满森 , 孙玉文 . 精密复杂曲面零件多轴数控加工技术研究进展[J]. 航空学报, 2021 , 42(10) : 524867 -524867 . DOI: 10.7527/S1000-6893.2020.24867

Abstract

Multi-axis Computer Numerical Control (CNC) machining is an iconic manufacturing technology in modern industry, which dominates the manufacturing of key components in the fields of energy, power, national defense, vehicles, aerospace, etc. In these fields, the requirement for high-end equipment is strict, so that a large number of precision and complex curved parts with considerable machining difficulty and tight performance tolerances have emerged. The machining requirements for these parts have been evolving from simple shape and position accuracy in the past towards high performance requirements that place equal emphasis on accuracy and performance. This brings severe challenges to the traditional CNC machining technology for complex curved parts. The state of the art and difficulties of the key technical issues such as accuracy guarantee, improvement of machining efficiency and control of the dynamic cutting process are discussed in terms of tool path planning, feedrate scheduling and dynamics analysis of CNC machining processes. Then, the feasible routes, breakthrough direction and future development trend are also expounded, so as to provide an effective reference and guidance for high performance machining of precision complex curved parts.

参考文献

[1] 孙玉文, 徐金亭, 任斐,等. 复杂曲面高性能多轴精密加工技术与方法[M]. 北京:科学出版社, 2014:1-7. SUN Y W, XU J T, REN F, et al. Technologies and methods for high-performance multi-axis precision machining of complex surfaces[M]. Beijing:Science Press, 2014:1-7(in Chinese).
[2] 郭东明, 孙玉文, 贾振元. 高性能精密制造方法及其研究进展[J]. 机械工程学报, 2014, 50(11):119-134. GUO D M, SUN Y W, JIA Z Y. Methods and research progress of high performance manufacturing[J]. Journal of Mechanical Engineering, 2014, 50(11):119-134(in Chinese).
[3] LASEMI A, XUE D Y, GU P H. Recent development in CNC machining of freeform surfaces:A state-of-the-art review[J]. Computer-Aided Design, 2010, 42(7):641-654.
[4] MAKHANOV S S. Adaptable geometric patterns for five-axis machining:A survey[J]. The International Journal of Advanced Manufacturing Technology, 2010, 47(9-12):1167-1208.
[5] TUNC L T. Smart tool path generation for 5-axis ball-end milling of sculptured surfaces using process models[J]. Robotics and Computer-Integrated Manufacturing, 2019, 56:212-221.
[6] 吴宝海, 罗明, 张莹, 等. 自由曲面五轴加工刀具轨迹规划技术的研究进展[J]. 机械工程学报, 2008, 44(10):9-18. WU B H, LUO M, ZHANG Y, et al. Advances in tool path planning techniques for 5-axis machining of sculptured surfaces[J]. Chinese Journal of Mechanical Engineering, 2008, 44(10):9-18(in Chinese).
[7] 樊文刚, 叶佩青. 复杂曲面五轴端铣加工刀具轨迹规划研究进展[J]. 机械工程学报, 2015, 51(15):168-182. FAN W G, YE P Q. Research progress in tool path planning for five-axis end milling machining of sculptured surfaces[J]. Journal of Mechanical Engineering, 2015, 51(15):168-182(in Chinese).
[8] 徐金亭, 刘伟军, 邱晓杰, 等. 自由曲面加工中的等参数螺旋轨迹生成方法[J]. 机械工程学报, 2010, 46(3):148-151, 157. XU J T, LIU W J, QIU X J, et al. Isoparametric and spiral toolpath for free-form surfaces machining[J]. Journal of Mechanical Engineering, 2010, 46(3):148-151, 157(in Chinese).
[9] LONEY G C, OZSOY T M. NC machining of free form surfaces[J]. Computer-Aided Design, 1987, 19(2):85-90.
[10] HE W, LEI M, BIN H Z. Iso-parametric CNC tool path optimization based on adaptive grid generation[J]. The International Journal of Advanced Manufacturing Technology, 2009, 41(5-6):538-548.
[11] ZOU Q, ZHAO J B. Iso-parametric tool-path planning for point clouds[J]. Computer-Aided Design, 2013, 45(11):1459-1468.
[12] SURESH K, YANG D C H. Constant scallop-height machining of free-form surfaces[J]. Journal of Engineering for Industry, 1994, 116(2):253-259.
[13] 徐金亭, 刘伟军, 卞宏友, 等. 基于网格曲面模型的等残留刀位轨迹生成方法[J]. 机械工程学报, 2010, 46(11):193-198. XU J T, LIU W J, BIAN H Y, et al. Constant scallop tool path for triangular surface machining[J]. Journal of Mechanical Engineering, 2010, 46(11):193-198(in Chinese).
[14] BALABOKHIN A, TARBUTTON J. Iso-scallop tool path building algorithm "based on tool performance metric" for generalized cutter and arbitrary milling zones in 3-axis CNC milling of free-form triangular meshed surfaces[J]. Journal of Manufacturing Processes, 2017, 28:565-572.
[15] LIU W, ZHU S M, HUANG T, et al. An efficient iso-scallop tool path generation method for three-axis scattered point cloud machining[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(7-8):3471-3483.
[16] 孙玉文, 刘伟军, 王越超. 基于三角网格曲面模型的刀位轨迹计算方法[J]. 机械工程学报, 2002, 38(10):50-53. SUN Y W, LIU W J, WANG Y C. Research on the algorithm of nc tool path calculation for triangular surface machining[J]. Chinese Journal of Mechanical Engineering, 2002, 38(10):50-53(in Chinese).
[17] DING S, MANNAN M A, POO A N, et al. Adaptive iso-planar tool path generation for machining of free-form surfaces[J]. Computer-Aided Design, 2003, 35(2):141-153.
[18] SUN Y W, GUO D M, JIA Z Y, et al. B-spline surface reconstruction and direct slicing from point clouds[J]. The International Journal of Advanced Manufacturing Technology, 2006, 27(9-10):918-924.
[19] YANG D C H, CHUANG J J, OULEE T H. Boundary-conformed toolpath generation for trimmed free-form surfaces[J]. Computer-Aided Design, 2003, 35(2):127-139.
[20] ZHANG R, HU P C, TANG K. Five-axis finishing tool path generation for a mesh blade based on linear morphing cone[J]. Journal of Computational Design and Engineering, 2015, 2(4):268-275.
[21] SARKAR S, DEY P P. Tool path generation for algebraically parameterized surface[J]. Journal of Intelligent Manufacturing, 2015, 26(2):415-421.
[22] TAKASUGI K, ASAKAWA N. Parameter-based spiral tool path generation for free-form surface machining[J]. Precision Engineering, 2018, 52:370-379.
[23] AGRAWAL R K, PRATIHAR D K, CHOUDHURY A R. Optimization of CNC isoscallop free form surface machining using a genetic algorithm[J]. International Journal of Machine Tools and Manufacture, 2006, 46(7-8):811-819.
[24] SU C, JIANG X, HUO G Y, et al. Initial tool path selection of the iso-scallop method based on offset similarity analysis for global preferred feed directions matching[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(7-8):2675-2687.
[25] QUINSAT Y, SABOURIN L. Optimal selection of machining direction for three-axis milling of sculptured parts[J]. The International Journal of Advanced Manufacturing Technology, 2007, 33(7-8):684-692.
[26] SUN Y W, GUO D M, JIA Z Y, et al. Iso-parametric tool path generation from triangular meshes for free-form surface machining[J]. The International Journal of Advanced Manufacturing Technology, 2006, 28(7-8):721-726.
[27] XU J T, JIN C N. Boundary-conformed machining for trimmed free-form surfaces based on mesh mapping[J]. International Journal of Computer Integrated Manufacturing, 2013, 26(8):720-730.
[28] SUN Y W, GUO D M, JIA Z Y. Spiral cutting operation strategy for machining of sculptured surfaces by conformal map approach[J]. Journal of Materials Processing Technology, 2006, 180(1-3):74-82.
[29] REN F, SUN Y W, GUO D M. Combined reparameterization-based spiral toolpath generation for five-axis sculptured surface machining[J]. The International Journal of Advanced Manufacturing Technology, 2009, 40(7-8):760-768.
[30] SUN Y W, XU J T, JIN C N, et al. Smooth tool path generation for 5-axis machining of triangular mesh surface with nonzero genus[J]. Computer-Aided Design, 2016, 79:60-74.
[31] XU J T, JI Y K, SUN Y W, et al. Spiral tool path generation method on mesh surfaces guided by radial curves[J]. Journal of Manufacturing Science and Engineering, 2018, 140(7):071016.
[32] XU J T, XU L K, SUN Y W, et al. A method of generating spiral tool path for direct three-axis computer numerical control machining of measured cloud of point[J]. Journal of Computing and Information Science in Engineering, 2019, 19(4):1-19.
[33] XU J T, SUN Y W, ZHANG L. A mapping-based approach to eliminating self-intersection of offset paths on mesh surfaces for CNC machining[J]. Computer-Aided Design, 2015, 62:131-142.
[34] XU J T, SUN Y W, WANG S K. Tool path generation by offsetting curves on polyhedral surfaces based on mesh flattening[J]. The International Journal of Advanced Manufacturing Technology, 2013, 64(9-12):1201-1212.
[35] SUN Y W, REN F, ZHU X H, et al. Contour-parallel offset machining for trimmed surfaces based on conformal mapping with free boundary[J]. The International Journal of Advanced Manufacturing Technology, 2012, 60(1-4):261-271.
[36] XU J T, WANG Y J, ZHANG X K, et al. Contour-parallel tool path generation for three-axis mesh surface machining based on one-step inverse forming[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2013, 227(12):1800-1807.
[37] LI W, YIN Z, HUANG Y, et al. Tool-path generation based on angle-based flattening[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2010, 224(10):1503-1509.
[38] CHIOU C J, LEE Y S. A machining potential field approach to tool path generation for multi-axis sculptured surface machining[J]. Computer-Aided Design, 2002, 34(5):357-371.
[39] KIM T, SARMA S E. Toolpath generation along directions of maximum kinematic performance; a first cut at machine-optimal paths[J]. Computer-Aided Design, 2002, 34(6):453-468.
[40] 孙玉文, 束长林, 刘健. 基于矢量分析的数控加工轨迹设计方法研究[J]. 机械工程学报, 2005, 41(3):160-164, 170. SUN Y W, SHU C L, LIU J. Vector analysis based tool path generation for precision surface machining[J]. Chinese Journal of Mechanical Engineering, 2005, 41(3):160-164, 170(in Chinese).
[41] BARAKCHI FARD M J, FENG H Y. Effective determination of feed direction and tool orientation in five-axis flat-end milling[J]. Journal of Manufacturing Science and Engineering, 2010, 132(6):061011.
[42] MY C A, BOHEZ E L J, MAKHANOV S S, et al. On 5-axis freeform surface machining optimization:Vector field clustering approach[J]. International Journal of CAD/CAM, 2009, 5(1):1-14.
[43] KUMAZAWA G H, FENG H Y, BARAKCHI FARD M J. Preferred feed direction field:A new tool path generation method for efficient sculptured surface machining[J]. Computer-Aided Design, 2015, 67-68:1-12.
[44] LIU X, LI Y G, MA S B, et al. A tool path generation method for freeform surface machining by introducing the tensor property of machining strip width[J]. Computer-Aided Design, 2015, 66:1-13.
[45] ZHANG K, TANG K. An efficient greedy strategy for five-axis tool path generation on dense triangular mesh[J]. The International Journal of Advanced Manufacturing Technology, 2014, 74(9-12):1539-1550.
[46] YE T, XIONG C H, XIONG Y L, et al. Kinematics constrained five-axis tool path planning for high material removal rate[J]. Science China Technological Sciences, 2011, 54(12):3155-3165.
[47] MOODLEAH S, MAKHANOV S S. 5-axis machining using a curvilinear tool path aligned with the direction of the maximum removal rate[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(1-4):65-90.
[48] LAMIKIZ A, DE LACALLE L N L, SÁNCHEZ J A, et al. Cutting force integration at the CAM stage in the high-speed milling of complex surfaces[J]. International Journal of Computer Integrated Manufacturing, 2005, 18(7):586-600.
[49] MANAV C, BANK H S, LAZOGLU I. Intelligent toolpath selection via multi-criteria optimization in complex sculptured surface milling[J]. Journal of Intelligent Manufacturing, 2013, 24(2):349-355.
[50] HUO G Y, JIANG X, SU C, et al. CNC tool path generation for freeform surface machining based on preferred feed direction field[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(5):777-790.
[51] XU K, LUO M, TANG K. Machine based energy-saving tool path generation for five-axis end milling of freeform surfaces[J]. Journal of Cleaner Production, 2016, 139:1207-1223.
[52] SUN S X, SUN Y W, XU J T, et al. Iso-planar feed vector-fields-based streamline tool path generation for five-axis compound surface machining with torus-end cutters[J]. Journal of Manufacturing Science and Engineering, 2018, 140(7):071013.
[53] SUN Y W, SUN S X, XU J T, et al. A unified method of generating tool path based on multiple vector fields for CNC machining of compound NURBS surfaces[J]. Computer-Aided Design, 2017, 91:14-26.
[54] TANG T D. Algorithms for collision detection and avoidance for five-axis NC machining:A state of the art review[J]. Computer-Aided Design, 2014, 51:1-17.
[55] LIANG F S, KANG C W, FANG F Z. A review on tool orientation planning in multi-axis machining[J]. International Journal of Production Research, (2020-07-09)[2020-11-26]. https://doi.org/10.1080/00207543.2020.1786187.
[56] RAO A, SARMA R. On local gouging in five-axis sculptured surface machining using flat-end tools[J]. Computer-Aided Design, 2000, 32(7):409-420.
[57] YOON J H, POTTMANN H, LEE Y S. Locally optimal cutting positions for 5-axis sculptured surface machining[J]. Computer-Aided Design, 2003, 35(1):69-81.
[58] WARKENTIN A, ISMAIL F, BEDI S. Multi-point tool positioning strategy for 5-axis mashining of sculptured surfaces[J]. Computer Aided Geometric Design, 2000, 17(1):83-100.
[59] GRAY P J, BEDI S, ISMAIL F. Arc-intersect method for 5-axis tool positioning[J]. Computer-Aided Design, 2005, 37(7):663-674.
[60] GRAY P, BEDI S, ISMAIL F. Rolling ball method for 5-axis surface machining[J]. Computer-Aided Design, 2003, 35(4):347-357.
[61] KIM S J, YANG M Y. Triangular mesh offset for generalized cutter[J]. Computer-Aided Design, 2005, 37(10):999-1014.
[62] CHOI B K, KIM D H, JERARD R B. C-space approach to tool-path generation for Die and mould machining[J]. Computer-Aided Design, 1997, 29(9):657-669.
[63] BALASUBRAMANIAM M, LAXMIPRASAD P, SARMA S, et al. Generating 5-axis NC roughing paths directly from a tessellated representation[J]. Computer-Aided Design, 2000, 32(4):261-277.
[64] LACHARNAY V, LAVERNHE S, TOURNIER C, et al. A physically-based model for global collision avoidance in 5-axis point milling[J]. Computer-Aided Design, 2015, 64:1-8.
[65] BEDI S, GRAVELLE S, CHEN Y H. Principal curvature alignment technique for machining complex surfaces[J]. Journal of Manufacturing Science and Engineering, 1997, 119(4B):756-765.
[66] CHIOU J C J, LEE Y S. Optimal tool orientation for five-axis tool-end machining by swept envelope approach[J]. Journal of Manufacturing Science and Engineering, 2005, 127(4):810-818.
[67] GONG H, CAO L X, LIU J. Improved positioning of cylindrical cutter for flank milling ruled surfaces[J]. Computer-Aided Design, 2005, 37(12):1205-1213.
[68] GONG H, CAO L X, LIU J. Second order approximation of tool envelope surface for 5-axis machining with single point contact[J]. Computer-Aided Design, 2008, 40(5):604-615.
[69] ZHU L M, ZHANG X M, ZHENG G, et al. Analytical expression of the swept surface of a rotary cutter using the envelope theory of sphere congruence[J]. Journal of Manufacturing Science and Engineering, 2009, 131(4):041017.
[70] ZHU L M, ZHENG G, DING H, et al. Global optimization of tool path for five-axis flank milling with a conical cutter[J]. Computer-Aided Design, 2010, 42(10):903-910.
[71] JUN C S, CHA K, LEE Y S. Optimizing tool orientations for 5-axis machining by configuration-space search method[J]. Computer-Aided Design, 2003, 35(6):549-566.
[72] LAUWERS B, DEJONGHE P, KRUTH J P. Optimal and collision free tool posture in five-axis machining through the tight integration of tool path generation and machine simulation[J]. Computer-Aided Design, 2003, 35(5):421-432.
[73] HO M C, HWANG Y R, HU C H. Five-axis tool orientation smoothing using quaternion interpolation algorithm[J]. International Journal of Machine Tools and Manufacture, 2003, 43(12):1259-1267.
[74] WANG N, TANG K. Automatic generation of gouge-free and angular-velocity-compliant five-axis toolpath[J]. Computer-Aided Design, 2007, 39(10):841-852.
[75] SUN Y W, BAO Y R, KANG K X, et al. A cutter orientation modification method for five-axis ball-end machining with kinematic constraints[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(9-12):2863-2874.
[76] HUANG K T, ZHANG Z Y, GONG H, et al. Constructing smooth tool orientation field based on radial basis function for 5-axis machining[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(1-4):1369-1379.
[77] LAVERNHE S, TOURNIER C, LARTIGUE C. Optimization of 5-axis high-speed machining using a surface based approach[J]. Computer-Aided Design, 2008, 40(10-11):1015-1023.
[78] WANG N, TANG K. Five-axis tool path generation for a flat-end tool based on iso-conic partitioning[J]. Computer-Aided Design, 2008, 40(12):1067-1079.
[79] BI Q Z, WANG Y H, ZHU L M, et al. Wholly smoothing cutter orientations for five-axis NC machining based on cutter contact point mesh[J]. Science China Technological Sciences, 2010, 53(5):1294-1303.
[80] CASTAGNETTI C, DUC E, RAY P. The Domain of Admissible Orientation concept:A new method for five-axis tool path optimisation[J]. Computer-Aided Design, 2008, 40(9):938-950.
[81] HU P C, TANG K. Improving the dynamics of five-axis machining through optimization of workpiece setup and tool orientations[J]. Computer-Aided Design, 2011, 43(12):1693-1706.
[82] PLAKHOTNIK D, LAUWERS B. Graph-based optimization of five-axis machine tool movements by varying tool orientation[J]. The International Journal of Advanced Manufacturing Technology, 2014, 74(1-4):307-318.
[83] MI Z P, YUAN C M, MA X H, et al. Tool orientation optimization for 5-axis machining with C-space method[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(5-8):1243-1255.
[84] WANG Q R, FENG Y X, ZHANG Z X, et al. Tool orientation sequence smoothing method based on the discrete domain of feasible orientations[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(9-12):4501-4510.
[85] XU R F, CHENG X, ZHENG G M, et al. A tool orientation smoothing method based on machine rotary axes for five-axis machining with ball end cutters[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(9-12):3615-3625.
[86] XU J T, ZHANG D Y, SUN Y W. Kinematics performance oriented smoothing method to plan tool orientations for 5-axis ball-end CNC machining[J]. International Journal of Mechanical Sciences, 2019, 157-158:293-303.
[87] SUN S X, SUN Y W, LEE Y S. A gouge-free tool axis reorientation method for kinematics compliant avoidance of singularity in 5-axis machining[J]. Journal of Manufacturing Science and Engineering, 2019, 141(5):051010.
[88] ZHAO Z Y, WANG S B, WANG Z H, et al. Interference-and chatter-free cutter posture optimization towards minimal surface roughness in five-axis machining[J]. International Journal of Mechanical Sciences, 2020, 171:105395.
[89] LAYEGH K S E, YIGIT I E, LAZOGLU I. Analysis of tool orientation for 5-axis ball-end milling of flexible parts[J]. CIRP Annals, 2015, 64(1):97-100.
[90] SUN C, ALTINTAS Y. Chatter free tool orientations in 5-axis ball-end milling[J]. International Journal of Machine Tools and Manufacture, 2016, 106:89-97.
[91] HUANG T, ZHANG X M, LEOPOLD J, et al. Tool orientation planning in milling with process dynamic constraints:a minimax optimization approach[J]. Journal of Manufacturing Science and Engineering, 2018, 140(11):111002.
[92] WANG Y P, XU J T, SUN Y W. Tool orientation adjustment for improving the kinematics performance of 5-axis ball-end machining via CPM method[J]. Robotics and Computer-Integrated Manufacturing, 2021, 68:102070.
[93] CRIPPS R J, CROSS B, HUNT M, et al. Singularities in five-axis machining:Cause, effect and avoidance[J]. International Journal of Machine Tools and Manufacture, 2017, 116:40-51.
[94] MUNLIN M, MAKHANOV S S, BOHEZ E L J. Optimization of rotations of a five-axis milling machine near stationary points[J]. Computer-Aided Design, 2004, 36(12):1117-1128.
[95] SØRBY K. Inverse kinematics of five-axis machines near singular configurations[J]. International Journal of Machine Tools and Manufacture, 2007, 47(2):299-306.
[96] BOZ Y, LAZOGLU I. A postprocessor for table-tilting type five-axis machine tool based on generalized kinematics with variable feedrate implementation[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(9-12):1285-1293.
[97] PESSOLES X, LANDON Y, SEGONDS S, et al. Optimisation of workpiece setup for continuous five-axis milling:application to a five-axis BC type machining centre[J]. The International Journal of Advanced Manufacturing Technology, 2013, 65(1-4):67-79.
[98] LIN Z W, FU J Z, SHEN H Y, et al. Non-singular tool path planning by translating tool orientations in C-space[J]. The International Journal of Advanced Manufacturing Technology, 2014, 71(9-12):1835-1848.
[99] LIN Z W, FU J Z, SHEN H Y, et al. Improving machined surface texture in avoiding five-axis singularity with the acceptable-texture orientation region concept[J]. International Journal of Machine Tools and Manufacture, 2016, 108:1-12.
[100] AFFOUARD A, DUC E, LARTIGUE C, et al. Avoiding 5-axis singularities using tool path deformation[J]. International Journal of Machine Tools and Manufacture, 2004, 44(4):415-425.
[101] YANG J X, ALTINTAS Y. Generalized kinematics of five-axis serial machines with non-singular tool path generation[J]. International Journal of Machine Tools and Manufacture, 2013, 75:119-132.
[102] WAN M, LIU Y, XING W J, et al. Singularity avoidance for five-axis machine tools through introducing geometrical constraints[J]. International Journal of Machine Tools and Manufacture, 2018, 127:1-13.
[103] GRANDGUILLAUME L, LAVERNHE S, TOURNIER C. A tool path patching strategy around singular point in 5-axis ball-end milling[J]. International Journal of Production Research, 2016, 54(24):7480-7490.
[104] ERKORKMAZ K. Efficient fitting of the feed correction polynomial for real-time spline interpolation[J]. Journal of Manufacturing Science and Engineering, 2015, 137(4):044501.
[105] TAJIMA S, SENCER B. Global tool-path smoothing for CNC machine tools with uninterrupted acceleration[J]. International Journal of Machine Tools and Manufacture, 2017, 121:81-95.
[106] TULSYAN S, ALTINTAS Y. Local toolpath smoothing for five-axis machine tools[J]. International Journal of Machine Tools and Manufacture, 2015, 96:15-26.
[107] YANG J X, YUEN A. An analytical local corner smoothing algorithm for five-axis CNC machining[J]. International Journal of Machine Tools and Manufacture, 2017, 123:22-35.
[108] HUANG J, DU X, ZHU L M. Real-time local smoothing for five-axis linear toolpath considering smoothing error constraints[J]. International Journal of Machine Tools and Manufacture, 2018, 124:67-79.
[109] TAJIMA S, SENCER B. Accurate real-time interpolation of 5-axis tool-paths with local corner smoothing[J]. International Journal of Machine Tools and Manufacture, 2019, 142:1-15.
[110] HENG M, ERKORKMAZ K. Design of a NURBS interpolator with minimal feed fluctuation and continuous feed modulation capability[J]. International Journal of Machine Tools and Manufacture, 2010, 50(3):281-293.
[111] DUAN M L, OKWUDIRE C. Minimum-time cornering for CNC machines using an optimal control method with NURBS parameterization[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(5-8):1405-1418.
[112] LU Y A, DING Y, ZHU L M. Smooth tool path optimization for flank milling based on the gradient-based differential evolution method[J]. Journal of Manufacturing Science and Engineering, 2016, 138(8):081009.
[113] YUEN A, ZHANG K, ALTINTAS Y. Smooth trajectory generation for five-axis machine tools[J]. International Journal of Machine Tools and Manufacture, 2013, 71:11-19.
[114] PATELOUP V, DUC E, RAY P. Bspline approximation of circle arc and straight line for pocket machining[J]. Computer-Aided Design, 2010, 42(9):817-827.
[115] FAN W, LEE C H, CHEN J H. A realtime curvature-smooth interpolation scheme and motion planning for CNC machining of short line segments[J]. International Journal of Machine Tools and Manufacture, 2015, 96:27-46.
[116] BI Q Z, SHI J, WANG Y H, et al. Analytical curvature-continuous dual-Bézier corner transition for five-axis linear tool path[J]. International Journal of Machine Tools and Manufacture, 2015, 91:96-108.
[117] SENCER B, ISHIZAKI K, SHAMOTO E. A curvature optimal sharp corner smoothing algorithm for high-speed feed motion generation of NC systems along linear tool paths[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(9-12):1977-1992.
[118] SHI J, BI Q Z, ZHU L M, et al. Corner rounding of linear five-axis tool path by dual PH curves blending[J]. International Journal of Machine Tools and Manufacture, 2015, 88:223-236.
[119] HU Q, CHEN Y P, JIN X L, et al. A real-time C3 continuous tool path smoothing and interpolation algorithm for five-axis machine tools[J]. Journal of Manufacturing Science and Engineering, 2020, 142(4):041002.
[120] SHI J, BI Q Z, WANG Y H, et al. Development of real-time look-ahead methodology based on quintic PH curve with G2 continuity for high-speed machining[J]. Applied Mechanics and Materials, 2013, 464:258-264.
[121] ZHANG L B, YOU Y P, HE J, et al. The transition algorithm based on parametric spline curve for high-speed machining of continuous short line segments[J]. The International Journal of Advanced Manufacturing Technology, 2011, 52(1-4):245-254.
[122] ZHAO H, ZHU L M, DING H. A real-time look-ahead interpolation methodology with curvature-continuous B-spline transition scheme for CNC machining of short line segments[J]. International Journal of Machine Tools and Manufacture, 2013, 65:88-98.
[123] ZHANG Y, YE P Q, WU J Q, et al. An optimal curvature-smooth transition algorithm with axis jerk limitations along linear segments[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(1-4):875-888.
[124] FAN W, JI J W, WU P Y, et al. Modeling and simulation of trajectory smoothing and feedrate scheduling for vibration-damping CNC machining[J]. Simulation Modelling Practice and Theory, 2020, 99:102028.
[125] BEUDAERT X, LAVERNHE S, TOURNIER C. 5-axis local corner rounding of linear tool path discontinuities[J]. International Journal of Machine Tools and Manufacture, 2013, 73:9-16.
[126] ERKORKMAZ K, ALTINTAS Y. High speed CNC system design. Part I:jerk limited trajectory generation and quintic spline interpolation[J]. International Journal of Machine Tools and Manufacture, 2001, 41(9):1323-1345.
[127] DU X, HUANG J, ZHU L M. A complete S-shape feed rate scheduling approach for NURBS interpolator[J]. Journal of Computational Design and Engineering, 2015, 2(4):206-217.
[128] HU J, XIAO L J, WANG Y H, et al. An optimal feedrate model and solution algorithm for a high-speed machine of small line blocks with look-ahead[J]. The International Journal of Advanced Manufacturing Technology, 2006, 28(9-10):930-935.
[129] ZHANG Z L, GUO S J, WANG H D, et al. A new acceleration and deceleration algorithm and applications[C]//2012 Second International Conference on Intelligent System Design and Engineering Application. Piscataway:IEEE Press, 2012:121-124.
[130] HUANG J, ZHU L M. Feedrate scheduling for interpolation of parametric tool path using the sine series representation of jerk profile[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2017, 231(13):2359-2371.
[131] WANG Y S, YANG D S, GAI R L, et al. Design of trigonometric velocity scheduling algorithm based on pre-interpolation and look-ahead interpolation[J]. International Journal of Machine Tools and Manufacture, 2015, 96:94-105.
[132] SENCER B, ALTINTAS Y, CROFT E. Feed optimization for five-axis CNC machine tools with drive constraints[J]. International Journal of Machine Tools and Manufacture, 2008, 48(7-8):733-745.
[133] ZHANG K, YUAN C M, GAO X S, et al. A greedy algorithm for feedrate planning of CNC machines along curved tool paths with confined jerk[J]. Robotics and Computer-Integrated Manufacturing, 2012, 28(4):472-483.
[134] BEUDAERT X, LAVERNHE S, TOURNIER C. Feedrate interpolation with axis jerk constraints on 5-axis NURBS and G1 tool path[J]. International Journal of Machine Tools and Manufacture, 2012, 57:73-82.
[135] SUN Y W, ZHAO Y, BAO Y R, et al. A smooth curve evolution approach to the feedrate planning on five-axis toolpath with geometric and kinematic constraints[J]. International Journal of Machine Tools and Manufacture, 2015, 97:86-97.
[136] DONG J, STORI J A. A generalized time-optimal bidirectional scan algorithm for constrained feed-rate optimization[J]. Journal of Dynamic Systems, Measurement, and Control, 2006, 128(2):379-390.
[137] LIU Y, WAN M, QIN X B, et al. FIR filter-based continuous interpolation of G01 commands with bounded axial and tangential kinematics in industrial five-axis machine tools[J]. International Journal of Mechanical Sciences, 2020, 169:105325.
[138] ERKORKMAZ K, HENG M. A heuristic feedrate optimization strategy for NURBS toolpaths[J]. CIRP Annals, 2008, 57(1):407-410.
[139] CHEN M S, SUN Y W. A moving knot sequence-based feedrate scheduling method of parametric interpolator for CNC machining with contour error and drive constraints[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(1-4):487-504.
[140] FAN W, GAO X S, LEE C H, et al. Time-optimal interpolation for five-axis CNC machining along parametric tool path based on linear programming[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69(5-8):1373-1388.
[141] GUO J X, ZHANG K, ZHANG Q, et al. Efficient time-optimal feedrate planning under dynamic constraints for a high-order CNC servo system[J]. Computer-Aided Design, 2013, 45(12):1538-1546.
[142] ERKORKMAZ K, CHEN Q G, ZHAO M Y, et al. Linear programming and windowing based feedrate optimization for spline toolpaths[J]. CIRP Annals, 2017, 66(1):393-396.
[143] SUN Y W, CHEN M S, JIA J J, et al. Jerk-limited feedrate scheduling and optimization for five-axis machining using new piecewise linear programming approach[J]. Science China Technological Sciences, 2019, 62(7):1067-1081.
[144] YEH S S, HSU P L. Adaptive-feedrate interpolation for parametric curves with a confined chord error[J]. Computer-Aided Design, 2002, 34(3):229-237.
[145] DU X, HUANG J, ZHU L M, et al. Third-order chord error estimation for freeform contour in computer-aided manufacturing and computer numerical control systems[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2019, 233(3):863-874.
[146] LIN M T, TSAI M S, YAU H T. Development of a dynamics-based NURBS interpolator with real-time look-ahead algorithm[J]. International Journal of Machine Tools and Manufacture, 2007, 47(15):2246-2262.
[147] JIA Z Y, SONG D N, MA J W, et al. A NURBS interpolator with constant speed at feedrate-sensitive regions under drive and contour-error constraints[J]. International Journal of Machine Tools and Manufacture, 2017, 116:1-17.
[148] WANG J, SUI Z, TIAN Y T, et al. A speed optimization algorithm based on the contour error model of lag synchronization for CNC cam grinding[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(5-8):1421-1432.
[149] DONG J, STORI J A. Optimal feed-rate scheduling for high-speed contouring[J]. Journal of Manufacturing Science and Engineering, 2007, 129(1):63-76.
[150] CHEN M S, SUN Y W. Contour error-bounded parametric interpolator with minimum feedrate fluctuation for five-axis CNC machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(1-4):567-584.
[151] YANG J X, ASLAN D, ALTINTAS Y. A feedrate scheduling algorithm to constrain tool tip position and tool orientation errors of five-axis CNC machining under cutting load disturbances[J]. CIRP Journal of Manufacturing Science and Technology, 2018, 23:78-90.
[152] DUONG T Q, RODRIGUEZ-AYERBE P, LAVERNHE S, et al. Contour error pre-compensation for five-axis high speed machining:offline gain adjustment approach[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(9-12):3113-3125.
[153] KHOSHDARREGI M R, TAPPE S, ALTINTAS Y. Integrated five-axis trajectory shaping and contour error compensation for high-speed CNC machine tools[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(6):1859-1871.
[154] CHEN M S, SUN Y W, XU J T. A new analytical path-reshaping model and solution algorithm for contour error pre-compensation in multi-axis computer numerical control machining[J]. Journal of Manufacturing Science and Engineering, 2020, 142(6):061006.
[155] ERKORKMAZ K, LAYEGH S E, LAZOGLU I, et al. Feedrate optimization for freeform milling considering constraints from the feed drive system and process mechanics[J]. CIRP Annals, 2013, 62(1):395-398.
[156] GUZEL B U, LAZOGLU I. Increasing productivity in sculpture surface machining via off-line piecewise variable feedrate scheduling based on the force system model[J]. International Journal of Machine Tools and Manufacture, 2004, 44(1):21-28.
[157] ERDIM H, LAZOGLU I, OZTURK B. Feedrate scheduling strategies for free-form surfaces[J]. International Journal of Machine Tools and Manufacture, 2006, 46(7-8):747-757.
文章导航

/