综述

AutoScan系列复杂零件自动化三维测量装备开发与应用

  • 李中伟 ,
  • 张攀 ,
  • 钟凯 ,
  • 李文龙
展开
  • 1. 华中科技大学 材料科学与工程学院 材料成形与模具技术国家重点实验室, 武汉 430074;
    2. 华中科技大学 机械科学与工程学院 数字制造装备与技术国家重点实验室, 武汉 430074

收稿日期: 2020-10-12

  修回日期: 2020-11-09

  网络出版日期: 2020-12-08

基金资助

国家自然科学基金(51675208);湖北省自然科学基金杰出青年基金项目(2019CFA045);湖北省技术创新专项(重大项目)(2019AAA008);湖北省重点研发计划项目(2020BAB137)

Development and application of AutoScan series automated 3D measuring equipment for complex parts

  • LI Zhongwei ,
  • ZHANG Pan ,
  • ZHONG Kai ,
  • LI Wenlong
Expand
  • 1. State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
    2. State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2020-10-12

  Revised date: 2020-11-09

  Online published: 2020-12-08

Supported by

National Natural Science Foundation of China (51675208);Excellent Young Program of Natural Science Foundation in Hubei Province (2019CFA045);The Major Project of Technological Innovation in Hubei Province(2019AAA008);Key Research and Development Program of Hubei Province (2020BAB137)

摘要

自动化三维测量可实现复杂零件的精度检测,为后续工艺优化提供基础数据,是保证航空航天领域复杂零件成形精度的关键技术,但应用时尚存在以下问题:其一,自动化三维测量视点规划仍以人工示教为主,规划效率低、效果差;其二,锻造成形等工业现场工况恶劣,易使系统预先标定的参数发生漂移,测量精度难以保证;其三,多视测量数据拼接仍主要采用标志点拼接的方式,过程繁琐,应用局限大;其四,在线自动化测量时受工装夹具等影响,测量点云中存在大量背景噪声,影响数据自动处理的精度与稳定性。针对上述难题,介绍了基于双目测头的自动化测量视点规划、基于耦合焦距比例约束的系统参数自标定、基于全局优化的多视测量数据拼接、基于自适应阈值迭代最近点(ICP)点云背景噪声自动去除等关键技术;在此基础上,研制了系列自动化三维测量装备,包括PowerVirtualPlan视点规划软件、PowerScan三维测量软件、iPoint3D数据处理软件的开发;最后,介绍自动化三维测量装备在航天航空等领域的工程应用情况。

本文引用格式

李中伟 , 张攀 , 钟凯 , 李文龙 . AutoScan系列复杂零件自动化三维测量装备开发与应用[J]. 航空学报, 2021 , 42(10) : 524863 -524863 . DOI: 10.7527/S1000-6893.2020.24863

Abstract

Automated 3D measurement can realize precision inspection of complex parts and provide basic data for subsequent process optimization. It is a key technology to ensure the forming accuracy of complex parts in the aerospace field. However, it encounters four challenges in application:viewpoint planning of automated 3D measurement is still based on manual teaching, leading to inefficiency and poor performance; harsh environment of industrial sites such as the forging site can easily cause drift of the pre-calibration parameters of the system, and the measurement accuracy cannot be guaranteed; registration of multi-view measurement data still mainly adopts the method of marked points registration, which is complicated and has great limitations in application; affected by tooling and fixtures during online automated measurement, there is a large amount of background noise in the measurement point cloud, which affects the accuracy and stability of automated data processing. To overcome these problems, this paper introduces the key technologies such as automated measurement viewpoint planning based on binocular measuring equipment, self-calibration of system parameters based on coupled focal length ratio constraints, measurement data registration of multi-view based on global optimization, and background noise removal of point cloud based on adaptive threshold Iterative Closest Point (ICP). A series of automated 3D measurement equipment is developed, including PowerVirtualPlan viewpoint planning software, PowerScan 3D measurement software, and iPoint3D data processing software. Application of automated 3D measurement equipment in aerospace and other fields are also presented.

参考文献

[1] ZHANG Y C, HAN J X, FU X B, et al. An online measurement method based on line laser scanning for large forgings[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(1-4):439-448.
[2] SUN C K, TAO L, WANG P, et al. A 3D acquisition system combination of structured-light scanning and shape from silhouette[J]. Chinese Optics Letters, 2006, 4(5):282-284.
[3] CHENG X, LIU X J, LI Z W, et al. High-accuracy globally consistent surface reconstruction using fringe projection profilometry[J]. Sensors, 2019, 19(3):668.
[4] HAN L Y, CHENG X, LI Z W, et al. A robot-driven 3D shape measurement system for automatic quality inspection of thermal objects on a forging production line[J]. Sensors (Basel, Switzerland), 2018, 18(12):4368.
[5] HE W T, ZHONG K, LI Z W, et al. Accurate calibration method for blade 3D shape metrology system integrated by fringe projection profilometry and conoscopic holography[J]. Optics and Lasers in Engineering, 2018, 110:253-261.
[6] ZHONG K, LI Z W, ZHOU X H, et al. Enhanced phase measurement profilometry for industrial 3D inspection automation[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(9-12):1563-1574.
[7] KARASZEWSKI M, SITNIK R, BUNSCH E. On-line, collision-free positioning of a scanner during fully automated three-dimensional measurement of cultural heritage objects[J]. Robotics and Autonomous Systems, 2012, 60(9):1205-1219.
[8] SITNIK R, KARASZEWSKI M, ZALUSKI W, et al. Automated full-3D shape measurement of cultural heritage objects[C]//O3A:Optics for Arts, Architecture, and Archaeology II, 2009.
[9] 李文龙, 李中伟, 毛金城. iPoint3D曲面检测软件开发与工程应用综述[J]. 机械工程学报, 2020, 56(7):127-150. LI W L, LI Z W, MAO J C. The development and application review of iPoint3D software for surface inspection[J]. Journal of Mechanical Engineering, 2020, 56(7):127-150(in Chinese).
[10] GOM. Optical measurement solutions for high-quality fan blades and performance[EB/OL]. https://www.gom.com/industries/aerospace/aero-engine/fan-blade-inspection.html.
[11] HEXAGON. Aero engine vane inspection|hexagon manufacturing intelligence[EB/OL]. https://www.hexagonmi.com/solutions/industries/aerospace/aero-engine/aero-engine-vane-inspection.
[12] 杨守瑞. 大型构件复杂曲面自动化测量方法与技术[D]. 天津:天津大学, 2017:138. YANG S R. Method and technology for robotic measurement of complex surface on large-scale components[D]. Tianjin:Tianjin University, 2017:138(in Chinese).
[13] LIU X J, MADHUSUDANAN H, CHEN W Y, et al. Fast eye-in-hand 3-D scanner-robot calibration for low stitching errors[J]. IEEE Transactions on Industrial Electronics, 2021, 68(9):8422-8432.
[14] SHENG W H, XI N, SONG M M, et al. Automated CAD-guided automobile part dimensional inspection[C]//IEEE International Conference on Robotics and Automation.Piscataway:IEEE Press, 2000:1157-1162.
[15] CHEN S Y, LI Y F. Automatic sensor placement for model-based robot vision[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2004, 34(1):393-408.
[16] GERMANI M, MANDORLI F, MENGONI M, et al. CAD-based environment to bridge the gap between product design and tolerance control[J]. Precision Engineering, 2010, 34(1):7-15.
[17] LARTIGUE C, QUINSAT Y, MEHDI-SOUZANI C, et al. Voxel-based path planning for 3D scanning of mechanical parts[J]. Computer-Aided Design and Applications, 2014, 11(2):220-227.
[18] LI Z W, SHI Y S, WANG C J, et al. Accurate calibration method for a structured light system[J]. Optical Engineering, 2008, 47:053604.
[19] VO M, WANG Z Y, PAN B, et al. Hyper-accurate flexible calibration technique for fringe-projection-based three-dimensional imaging[J]. Optics Express, 2012, 20(15):16926-16941.
[20] CUI Y, ZHOU F Q, WANG Y X, et al. Precise calibration of binocular vision system used for vision measurement[J]. Optics Express, 2014, 22(8):9134-9149.
[21] ZHANG Z H, MA H Y, ZHANG S X, et al. Simple calibration of a phase-based 3D imaging system based on uneven fringe projection[J]. Optics Letters, 2011, 36(5):627.
[22] GARBACZ P, MIZAK W. A novel approach for automation of stereo camera calibration process[J]. Pomiary Automatyka Robotyka, 2013, 17(2):234-238.
[23] DANG T, HOFFMANN C, STILLER C. Continuous stereo self-calibration by camera parameter tracking[J]. IEEE Transactions on Image Processing, 2009, 18(7):1536-1550.
[24] XU D H, ZENG Q Q, ZHAO H J, et al. Online stereovision calibration using on-road markings[C]//17th International IEEE Conference on Intelligent Transportation Systems (ITSC). Piscataway:IEEE Press, 2014:245-252.
[25] ZHAO H J, WANG Z, JIANG H Z, et al. Calibration for stereo vision system based on phase matching and bundle adjustment algorithm[J]. Optics and Lasers in Engineering, 2015, 68:203-213.
[26] YIN Y K, PENG X, LI A M, et al. Calibration of fringe projection profilometry with bundle adjustment strategy[J]. Optics Letters, 2012, 37(4):542.
[27] BRÄUER-BURCHARDT C, KVHMSTEDT P, NOTNI G. Calibration of stereo 3D scanners with minimal number of views using plane targets and vanishing points[C]//Computer Analysis of Images and Patterns, 2015.
[28] BRÄUER-BURCHARDT C, KVHMSTEDT P, NOTNI G. Error compensation by sensor Re-calibration in fringe projection based optical 3D stereo scanners[C]//Image Analysis and Processing-ICIAP 2011, 2011.
[29] XIAO Y L, XUE J P, SU X Y. Robust self-calibration three-dimensional shape measurement in fringe-projection photogrammetry[J]. Optics Letters, 2013, 38(5):694.
[30] OUELLET J N, HÉBERT P. Precise ellipse estimation without contour point extraction[J]. Machine Vision and Applications, 2008, 21(1):59-67.
[31] NEWCOMBE R A, IZADI S, HILLIGES O, et al. KinectFusion:Real-time dense surface mapping and tracking[C]//201110th IEEE International Symposium on Mixed and Augmented Reality. Piscataway:IEEE Press, 2011:127-136.
[32] LEFLOCH D, KLUGE M, SARBOLANDI H, et al. Comprehensive use of curvature for robust and accurate online surface reconstruction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2349-2365.
[33] HENRY P, KRAININ M, HERBST E, et al. RGB-D mapping:Using Kinect-style depth cameras for dense 3D modeling of indoor environments[J]. The International Journal of Robotics Research, 2012, 31(5):647-663.
[34] DAI A, NIEßNER M, ZOLLHÖFER M, et al. BundleFusion[J]. ACM Transactions on Graphics, 2017, 36(4):1.
[35] ZHOU Q Y, MILLER S, KOLTUN V. Elastic fragments for dense scene reconstruction[C]//2013 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2013:473-480.
[36] WHELAN T, KAESS M, JOHANNSSON H, et al. Real-time large-scale dense RGB-D SLAM with volumetric fusion[J]. The International Journal of Robotics Research, 2015, 34(4-5):598-626.
[37] LU F, MILIOS E. Globally consistent range scan alignment for environment mapping[J]. Autonomous Robots, 1997, 4(4):333-349.
[38] CAO Y P, XU B B, YE Z Y, et al. Depth and thermal sensor fusion to enhance 3D thermographic reconstruction[J]. Optics Express, 2018, 26(7):8179-8193.
[39] YUE H S, YU Y, CHEN W H, et al. Accurate three dimensional body scanning system based on structured light[J]. Optics Express, 2018, 26(22):28544-28559.
[40] 程云勇, 张定华, 卜昆, 等. 涡轮叶片形状检测中的模型配准控制点集选取[J]. 机械工程学报, 2009, 45(11):240-246. CHENG Y Y, ZHANG D H, BU K, et al. Model registration control point set selection for turbine blade shape inspection[J]. Journal of Mechanical Engineering, 2009, 45(11):240-246(in Chinese).
[41] CHETVERIKOV D, SVIRKO D, STEPANOV D, et al. The trimmed iterative closest point algorithm[C]//Object Recognition Supported by User Interaction for Service Robots. Piscataway:IEEE Press, 2002:545-548.
[42] JIAN B, VEMURI B C. Robust point set registration using Gaussian mixture models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1633-1645.
[43] CHENG X, LI Z W, ZHONG K, et al. An automatic and robust point cloud registration framework based on view-invariant local feature descriptors and transformation consistency verification[J]. Optics and Lasers in Engineering, 2017, 98:37-45.
[44] YANG Y, LAI Y, HU S, et al. Robust principal curvatures on multiple scales[C]//Symposium on Geometry Processing. Cagliari:The Eurographics Association, 2006:223-226.
[45] PAULY M, GROSS M, KOBBELT L P. Efficient simplification of point-sampled surfaces[C]//IEEE Visualization, 2002. Piscataway:IEEE Press, 2002:163-170.
[46] MUR-ARTAL R, MONTIEL J M M, TARDÓS J D. ORB-SLAM:A versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31(5):1147-1163.
[47] MUR-ARTAL R, TARDÓS J D. Fast relocalisation and loop closing in keyframe-based SLAM[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). Piscataway:IEEE Press, 2014:846-853.
[48] WILLIAMS B, CUMMINS M, NEIRA J, et al. A comparison of loop closing techniques in monocular SLAM[J]. Robotics and Autonomous Systems, 2009, 57(12):1188-1197.
[49] LABBÉ M, MICHAUD F. Appearance-based loop closure detection for online large-scale and long-term operation[J]. IEEE Transactions on Robotics, 2013, 29(3):734-745.
[50] WEISE T, WISMER T, LEIBE B, et al. In-hand scanning with online loop closure[C]//2009 IEEE 12th International Conference on Computer Vision Workshops. Piscataway:IEEE Press, 2009:1630-1637.
[51] HO K L, NEWMAN P. Loop closure detection in SLAM by combining visual and spatial appearance[J]. Robotics and Autonomous Systems, 2006, 54(9):740-749.
[52] GÁLVEZ-LÓPEZ D, TARDÓS J D. Real-time loop detection with bags of binary words[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2011:51-58.
[53] BESL P J, MCKAY N D. Method for registration of 3-D shapes[C]//Proc SPIE 1611, Sensor Fusion IV:Control Paradigms and Data Structures, 1992:586-606.
[54] BLAIS G, LEVINE M D. Registering multiview range data to create 3D computer objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8):820-824.
[55] CHEN Y, MEDIONI G. Object modelling by registration of multiple range images[J]. Image and Vision Computing, 1992, 10(3):145-155.
[56] LIU X J, ZHAO H S, ZHAN G M, et al. Rapid and automatic 3D body measurement system based on a GPU-Steger line detector[J]. Applied Optics, 2016, 55(21):5539-5547.
[57] NGUYEN H, NGUYEN D, WANG Z Y, et al. Real-time, high-accuracy 3D imaging and shape measurement[J]. Applied Optics, 2015, 54(1):A9-A17.
[58] ZHANG S, ROYER D, YAU S T. GPU-assisted high-resolution, real-time 3-D shape measurement[J]. Optics Express, 2006, 14(20):9120-9129.
[59] ZHONG K, LI Z W, ZHOU X H, et al. Hybrid parallel computing architecture for multiview phase shifting[J]. Optical Engineering, 2014, 53:112214.
[60] 惟景三维. AutoScan系列自动化三维测量设备[EB/OL]. http://www.vision3dtech.com/index.php/List/7.html\\. VISION 3D. AutoScan series of automated 3D measuring equipment[EB/OL]. http://www.vision3dtech.com/index.php/List/7.html\\ (in Chinese).
文章导航

/