电子电气工程与控制

基于鲁棒模型的航空交流感应电机预测转矩控制

  • 颜黎明 ,
  • 赵冬冬 ,
  • 焦宁飞
展开
  • 1. 长安大学 汽车学院, 西安 710064;
    2. 西北工业大学 自动化学院, 西安 710129

收稿日期: 2020-09-02

  修回日期: 2020-10-09

  网络出版日期: 2020-12-08

基金资助

国家自然科学基金(51807165);航空科学基金(20184053027);陕西省重点研发计划(2020GY-112);中国博士后科学基金会面上资助(2019M660246)

Robust model based-predictive torque control of aviation AC induction motor

  • YAN Liming ,
  • ZHAO Dongdong ,
  • JIAO Ningfei
Expand
  • 1. School of Automobile, Chang'an University, Xi'an 710064, China;
    2. School of Automation, Northwestern Polytechnical University, Xi'an 710129, China

Received date: 2020-09-02

  Revised date: 2020-10-09

  Online published: 2020-12-08

Supported by

National Natural Science Foundation of China (51807165); Aeronautical Science Foundation of China (20184053027); Key Research and Development Program of Shaanxi (2020GY-112); China Postdoctoral Science Foundation (2019M660246)

摘要

航空领域对驱动电机的动态、稳态及鲁棒性能提出了更为苛刻的要求。近年来,有限集模型预测控制(FCS-MPC)以其动态响应快、稳态性能好(同开关频率下)等诸多优点成为电机驱动领域的国际研究前沿。然而,预测模型依赖于电机参数,鲁棒性差。特别地,在感应电机的FCS-MPC中,模型失配引起电磁转矩预测误差,进而降低系统性能甚至导致系统失稳。针对此问题,提出了一种基于鲁棒模型的感应电机预测转矩控制。在定子电流预测方面,在传统开环模式的基础上,建立了闭环模式的定子电流预测方程,研究了其稳定性及参数设计方法。在定子磁链矢量预测方面,在传统电压模型预测法的基础上,建立了融合电压模型及电流模型的离散混合预测模型,基于比例积分调节器调节电压模型到电流模型的平滑切换。感应电机的电磁转矩则由闭环模式预测的定子电流和定子磁链计算得到。在一台2.2 kW感应电机实验平台上对本文提出的算法进行验证,实验结果证明了该方法的有效性。

本文引用格式

颜黎明 , 赵冬冬 , 焦宁飞 . 基于鲁棒模型的航空交流感应电机预测转矩控制[J]. 航空学报, 2021 , 42(9) : 324700 -324700 . DOI: 10.7527/S1000-6893.2020.24700

Abstract

The dynamic, steady-state and robust performance of the drive motor are more demanding in aviation field. In recent years, Finite Control Set-Model Predictive Control (FCS-MPC) has become an international research frontier in the field of motor drive because of its fast dynamic response and good steady-state performance (at the same switching frequency). However, the prediction model depends on the motor parameters and has poor robustness. In particular, in FCS-MPC of the induction motor, the mismatched model causes the prediction error of electromagnetic torque, and then reduces the system performance and even leads to system instability. To solve this problem, a robust predictive torque control of induction motor based on the discrete hybrid prediction model is proposed. The traditional open-loop model for prediction of stator current is abandoned. An equation for prediction of stator current of the closed-loop model is established, and its stability and parameter design are studied. For prediction of stator flux vector, the traditional voltage model prediction method is abandoned, and a discrete hybrid prediction model integrating the voltage model and the current model is established. The proportional-integral regulator is used to adjust the smooth switching from the voltage model to the current model of the discrete hybrid prediction model. The electromagnetic torque is calculated by the current and the stator flux, which are predicted by the closed-loop model. The proposed algorithm is verified on a 2.2 kW induction motor experimental platform, and the experimental results show the effectiveness of the algorithm.

参考文献

[1] VAZQUEZ S, RODRIGUEZ J, RIVERA M, et al. Model predictive control for power converters and drives:Ad-vances and trends[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2):935-947.
[2] CORTES P, KAZMIERKOWSKI M P, KENNEL R M, et al. Predictive control in power electronics and drives[J]. IEEE Transactions on Industrial Electronics, 2008, 55(12):4312-4324.
[3] 柳志飞, 杜贵平, 杜发达. 有限集模型预测控制在电力电子系统中的研究现状和发展趋势[J]. 电工技术学报, 2017, 32(22):58-69. LIU Z F, DU G P, DU F D. Research status and devel-opment trend of finite control set model predictive control in power electronics[J]. Transactions of China Electro-technical Society, 2017, 32(22):58-69(in Chinese).
[4] 徐艳平, 张保程, 周钦. 永磁同步电机双矢量模型预测电流控制[J]. 电工技术学报, 2017, 32(20):222-230. XU Y P, ZHANG B C, ZHOU Q. Two-vector based model predictive current control for permanent magnet synchronous motor[J]. Transactions of China Electro-technical Society, 2017, 32(20):222-230(in Chinese).
[5] 宋战锋, 夏长亮, 谷鑫. 静止坐标系下基于最优时间序列的电压型PWM整流器电流预测控制[J]. 电工技术学报, 2013, 28(3):234-240. SONG Z F, XIA C L, GU X. Stationary frame current regulation of PWM rectifiers based on predictive con-trol[J]. Transactions of China Electrotechnical Society, 2013, 28(3):234-240(in Chinese).
[6] 牛峰, 李奎, 王尧. 基于占空比调制的永磁同步电机直接转矩控制[J]. 电工技术学报, 2014, 29(11):20-29. NIU F, LI K, WANG Y. Model predictive direct torque control for permanent magnet synchronous machines based on duty ratio modulation[J]. Transactions of China Electrotechnical Society, 2014, 29(11):20-29(in Chinese).
[7] 张永昌, 杨海涛. 异步电机无速度传感器模型预测控制[J]. 中国电机工程学报, 2014, 34(15):2422-2429. ZHANG Y C, YANG H T. Model predictive control for speed sensorless induction motor drive[J]. Proceedings of the CSEE, 2014, 34(15):2422-2429(in Chinese).
[8] 郑泽东, 王奎, 李永东, 等. 采用模型预测控制的交流电机电流控制器[J]. 电工技术学报, 2013, 28(11):118-123. ZHENG Z D, WANG K, LI Y D, et al. Current controller for AC motors using model predictive control[J]. Transactions of China Electrotechnical Society, 2013, 28(11):118-123(in Chinese).
[9] YARAMASU V, WU B. Predictive control of a three-level boost converter and an NPC inverter for high-power PMSG-based medium voltage wind energy conversion systems[J]. IEEE Transactions on Power Electronics, 2014, 29(10):5308-5322.
[10] XU W, ELMORSHEDY M F, LIU Y, et al. Finite-set model predictive control based thrust maximization of lin-ear induction motors used in linear metros[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6):5443-5458.
[11] YUAN X, ZHANG S, ZHANG C N. Improved model predictive current control for SPMSM drives with param-eter mismatch[J]. IEEE Transactions on Industrial Elec-tronics, 2020, 67(2):852-862.
[12] YOUNG H A, PEREZ M A, RODRIGUEZ J. Analysis of finite-control-set model predictive current control with model parameter mismatch in a three-phase inverter[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5):3100-3107.
[13] SIAMI M, KHABURI D A, RODRÍGUEZ J. Torque ripple reduction of predictive torque control for PMSM drives with parameter mismatch[J]. IEEE Transactions on Power Electronics, 2017, 32(9):7160-7168.
[14] ZHANG X G, ZHANG L, ZHANG Y C. Model predic-tive current control for PMSM drives with parameter ro-bustness improvement[J]. IEEE Transactions on Power Electronics, 2019, 34(2):1645-1657.
[15] 易伯瑜, 康龙云, 冯自成, 等. 基于扰动观测器的永磁同步电机预测电流控制[J]. 电工技术学报, 2016, 31(18):37-45. YI B Y, KANG L Y, FENG Z C, et al. Predictive current control for permanent magnet synchronous motor based on disturbance observer[J]. Transactions of China Electrotechnical Society, 2016, 31(18):37-45(in Chinese).
[16] 王庚, 杨明, 牛里, 等. 永磁同步电机电流预测控制电流静差消除算法[J]. 中国电机工程学报, 2015, 35(10):2544-2551. WANG G, YANG M, NIU L, et al. A static current error elimination algorithm for PMSM predictive current control[J]. Proceedings of the CSEE, 2015, 35(10):2544-2551(in Chinese).
[17] 周湛清, 夏长亮, 陈炜, 等. 具有参数鲁棒性的永磁同步电机改进型预测转矩控制[J]. 电工技术学报, 2018, 33(5):965-972. ZHOU Z Q, XIA C L, CHEN W, et al. Modified predic-tive torque control for PMSM drives with parameter ro-bustness[J]. Transactions of China Electrotechnical Socie-ty, 2018, 33(5):965-972(in Chinese).
[18] WANG J, WANG F, ZHANG Z, et al. Design and im-plementation of disturbance compensation-based en-hanced robust finite control set predictive torque control for induction motor systems[J]. IEEE Transactions on Industrial Informatics, 2017, 13(5):2645-2656.
[19] WANG J, WANG F, WANG G, et al. Generalized pro-portional integral observer based robust finite control set predictive current control for induction motor systems with time-varying disturbances[J]. IEEE Transactions on Industrial Informatics, 2018, 14(9):4159-4168.
[20] YAN L M, DOU M F, HUA Z G, et al. Robustness im-provement of FCS-MPTC for induction machine drives using disturbance feedforward compensation technique[J]. IEEE Transactions on Power Electronics, 2019, 34(3):2874-2886.
[21] KWAK S, MOON U C, PARK J C. Predictive-control-based direct power control with an adaptive parameter identification technique for improved AFE performance[J]. IEEE Transactions on Power Electronics, 2014, 29(11):6178-6187.
[22] CHEN C, LI L K, ZHANG Q, et al. Online inductor pa-rameters identification by small-signal injection for sen-sorless predictive current controlled boost converter[J]. IEEE Transactions on Industrial Informatics, 2017, 13(4):1554-1564.
[23] MAO S, LIU W G, JIAO N F, et al. Design and imple-mentation of parameter estimation and start control of brushless synchronous starter/generators under sudden excitation change[J]. IEEE Transactions on Industrial Electronics, 2020, 67(5):3551-3561.
[24] ZHANG Y C, JIAO J, LIU J. Direct power control of PWM rectifiers with online inductance identification under unbalanced and distorted network conditions[J]. IEEE Transactions on Power Electronics, 2019, 34(12):12524-12537.
[25] 方支剑, 段善旭, 陈天锦, 等. 储能逆变器预测控制误差形成机理及其抑制策略[J]. 中国电机工程学报, 2013, 33(30):1-9,19. FANG Z J, DUAN S X, CHEN T J, et al. Formation mechanism and suppression strategy of prediction control error applied in a battery energy storage inverter[J]. Pro-ceedings of the CSEE, 2013, 33(30):1-9,19(in Chinese).
[26] SIAMI M, KHABURI D A, ABBASZADEH A, et al. Robustness improvement of predictive current control us-ing prediction error correction for permanent-magnet syn-chronous machines[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6):3458-3466.
文章导航

/