机载系统与电子系统专栏

基于不确定传感器状态的机载系统多层故障诊断方法

  • 石健 ,
  • 王少萍 ,
  • 罗雪松
展开
  • 1. 北京航空航天大学 自动化科学与电气工程学院, 北京 100191;
    2. 北京航空航天大学 宁波创新研究院, 宁波 315800

收稿日期: 2020-06-08

  修回日期: 2020-09-04

  网络出版日期: 2020-12-08

基金资助

国家自然科学基金(51875014,51875015);专项基金(2017-V-0011)

Multi-layer fault diagnosis of airborne system based on sensor uncertainty

  • SHI Jian ,
  • WANG Shaoping ,
  • LUO Xuesong
Expand
  • 1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China;
    2. Ningbo Institute of Technology, Beihang University, Ningbo 315800, China

Received date: 2020-06-08

  Revised date: 2020-09-04

  Online published: 2020-12-08

Supported by

National Natural Science Foundation of China (51875014,51875015); Special Fund (2017-V-0011)

摘要

准确的机载系统故障诊断是保证飞机安全飞行和实现经济效益最大化的重要途径。然而传感器受到内外部环境条件的影响而不可避免的存在检测状态的不确定性,因此基于单个传感器或局部区域传感器综合检测结果的方法难以完全保证故障诊断的有效性和正确性。针对飞机机载系统的结构和工作原理,充分利用系统中不同层级、不同区域传感器检测特征之间的关联关系,考虑单个传感器本身存在的不确定性,构建了传感器信息前向融合与反向校验相结合的分层诊断决策方法,实现了对系统状态和传感器状态的双重估计与更新,克服了单一传感器故障对系统诊断推理准确度的影响。该方法较传统故障诊断模型,不再依赖某一个或某一类传感器信息的绝对可靠,在实现系统级的准确故障诊断同时,还能判断具体某一传感器本身是否发生虚拟警。在飞机液压系统故障诊断案例中,新方法成功将系统故障诊断的虚警率降低了96%,传感器的不确定度降低了84%。

本文引用格式

石健 , 王少萍 , 罗雪松 . 基于不确定传感器状态的机载系统多层故障诊断方法[J]. 航空学报, 2021 , 42(6) : 624376 -624376 . DOI: 10.7527/S1000-6893.2020.24376

Abstract

Accurate fault diagnosis of airborne system is an important way to ensure safe aircraft flight and maximize economic benefits. However, due to impacts of internal and external environmental conditions, the sensor has detection uncertainties, and is thus difficult to guarantee the validity and correctness of fault diagnosis based on detection of single sensor or of local sensors. Based on the structure and working principle of the airborne system, this paper proposes a hierarchical diagnosis decision-making method based on a combination of evidence forward fusion and reverse verification. The correlation between the detection features of sensors in different levels and different regions in the airborne system, and the uncertainty of a single sensor itself is considered. Estimation of both of the system state and sensor state can be realized, and the influence of single sensor fault on the accuracy of system diagnosis can be overcome. Compared with the traditional fault diagnosis model, the proposed method no longer depends on the absolute reliability of one or a kind of sensor information. At the same time, it can realize the accurate fault diagnosis at the system level, and can also judge whether a specific sensor itself has virtual alarm. In the case of fault diagnosis of aircraft hydraulic system, it can be seen that with the method proposed, the false alarm rate of system fault diagnosis is successfully reduced by 96% and the sensor uncertainty by 84%.

参考文献

[1] 蒋晓阳. 波音737MAX飞机可能涉及的设计和审定方面的问题[J]. 航空维修与工程, 2019(5):16-17. JIANG X Y. Some possible issues on the design and airworthiness of B737MAX[J]. Aviation Maintenance & Engineering, 2019(5):16-17(in Chinese).
[2] 馮建文, 孫黎, 劉金龍. 波音737-8事故简析[J]. 航空动力, 2019(2):50-55. FENG J W, SUN L, LIU J L. Brief analysis of the Boeing 737-8 crashes[J]. Aerospace Power, 2019(2):50-55(in Chinese).
[3] 杨光. 机电产品BIT系统传感层降虚警的理论与技术研究[D]. 长沙:国防科学技术大学, 2003. YANG G. Research on false-alarm-rate decreasing at sensor-level of built-in test systems in mechatronic products[D]. Changsha:National University of Defense Technology, 2003(in Chinese).
[4] LI D L, WANG Y, WANG J X, et al. Recent advances in sensor fault diagnosis:A review[J]. Sensors and Actuators A:Physical, 2020, 309:111990.
[5] WILLIAMS R, BANNER J, KNOWLES I, et al. An investigation of ‘cannot duplicate’ failures[J]. Quality and Reliability Engineering International, 1998, 14(5):331-337.
[6] 唐志帅, 刘兴华, 盛伟强, 等. 民用飞机飞控系统传感器信号表决设计[J]. 民用飞机设计与研究, 2017(2):121-124. TANG Z S, LIU X H, SHENG W Q, et al. The sensor voter design of flight control system for civil aircraft[J]. Civil Aircraft Design & Research, 2017(2):121-124(in Chinese).
[7] ZHANG Y, WANG S P. Dual-redundancy sensor fault diagnosis of fuel metering unit based on real-time residual window[C]//CSAA/IET International Conference on Aircraft Utility Systems, 2018:537-542.
[8] 王恒国, 陆洋. 电控旋翼传感器系统余度设计及表决算法研究[J]. 南京航空航天大学学报, 2015, 47(2):290-295. WANG H G, LU Y. Research on sensor system redundancy design and voting algorithm of electrically controlled rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2):290-295(in Chinese).
[9] PRABHU S, ANITHA G. An innovative analytic redundancy approach to air data sensor fault detection[J]. Aeronautical Journal, 2020, 124(1273):346-367.
[10] VAN EYKEREN L, CHU Q P. Sensor fault detection and isolation for aircraft control systems by kinematic relations[J]. Control Engineering Practice, 2014, 31:200-210.
[11] WU G H, TONG J J, ZHANG L G, et al. Framework for fault diagnosis with multi-source sensor nodes in nuclear power plants based on a Bayesian network[J]. Annals of Nuclear Energy, 2018, 122:297-308.
[12] ANSARI A, BERNSTEIN D S. Aircraft sensor fault detection using state and input estimation[C]//2016 American Control Conference. Piscataway:IEEE Press, 2016:5951-5956.
[13] 徐晓滨, 叶梓发, 徐晓健, 等. 基于分层式证据推理的信息融合故障诊断方法[J]. 控制理论与应用,2020,37(8):1681-1692. XU X B, YE Z F, XU X J, et al. Information fusion-based fault diagnosis method via hierarchical evidence reasoning[J]. Control Theory & Apprications, 2020,37(8):1681-1692(in Chinese).
[14] HUANG S J, DUAN R X, HE J J, et al. Fault diagnosis strategy for complex systems based on multi-source heterogeneous information under epistemic uncertainty[J]. IEEE Access, 2020, 8:50921-50933.
[15] LIU C, SUN J Z, WANG F Y, et al. Bayesian network method for fault diagnosis of civil aircraft environment control system[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2020, 234(5):662-674.
[16] LU C Q, WANG S P, WANG X J. A multi-source information fusion fault diagnosis for aviation hydraulic pump based on the new evidence similarity distance[J]. Aerospace Science and Technology, 2017, 71:392-401.
[17] 谭治学. 多源信息融合的民航发动机性能预测方法研究[D]. 哈尔滨:哈尔滨工业大学, 2018. TAN Z X. Research on the performance prediction of commercial aircraft engine by multi-source information fusion[D]. Harbin:Harbin Institute of Technology, 2018(in Chinese).
[18] 孙东川, 孙凯, 钟拥军. 系统工程引论[M]. 4版. 北京:清华大学出版社, 2019. SUN D C, SUN K, ZHONG Y J. Introduction to System Engineering[M]. 4th edition. Beijing:Tsinghua University Press, 2019(in Chinese).
[19] DANGUT M D, SKAF Z, JENNIONS I K. An integrated machine learning model for aircraft components rare failure prognostics with log-based dataset[J]. ISA Transactions, 2020. doi:10.1016/j.isatora.020.05.001(in Press).
[20] 崔晓玉. 基于能量的可靠性建模方法及在飞机操纵系统中的应用[D]. 北京:北京航空航天大学, 2019. CUI X Y. Energy based reliability modeling method and its application in aircraft flight control system[D]. Beijing:Beihang University, 2019(in Chinese).
[21] 工业和信息化部电子第五研究所.电子设备可靠性预计手册:GJB299/C-2006[M].北京:中国国家标准化管理委员会,2006. The Fifth Institute of Electronics, Ministry of industry and information technology. Reliability prediction handbook for electronic equipment:GJB299/C-2006:[M]. Beijing:Standardization Administration of the People's Republic of China, 2006(in Chinese).
[22] 全国军事装备可靠性标准化技术委员会. 非电产品可靠性手册[M]. 北京:可靠性标准化技术委员会,1992. National Technical Committee for Reliability Standardization of Military Equipment. NPRD Manual[M]. Beijing:National Technical Committee for Reliability Standardization of Military Equipment, 1992(in Chinese).
文章导航

/