固体力学与飞行器总体设计

机动飞行环境下双转子系统主共振特性分析

  • 陈毅 ,
  • 侯磊 ,
  • 林荣洲 ,
  • 杨洋 ,
  • 陈予恕
展开
  • 1. 哈尔滨工业大学 航天学院, 哈尔滨 150001;
    2. 西南交通大学 力学与工程学院 应用力学与结构安全四川省重点实验室, 成都 610031

收稿日期: 2020-10-09

  修回日期: 2020-12-04

  网络出版日期: 2020-12-03

基金资助

国家自然科学基金(11972129,11602070,11702228);国家科技重大专项(2017-IV-0008-0045);应用力学与结构安全四川省重点实验室开放课题基金(SZDKF-201903)

Analysis of primary resonance characteristics of dual-rotor system in maneuvering flight environment

  • CHEN Yi ,
  • HOU Lei ,
  • LIN Rongzhou ,
  • YANG Yang ,
  • CHEN Yushu
Expand
  • 1. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China;
    2. Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China

Received date: 2020-10-09

  Revised date: 2020-12-04

  Online published: 2020-12-03

Supported by

National Natural Science Foundation of China(11972129, 11602070, 11702228); National Science and Technology Major Project(2017-IV-0008-0045); the Opening Project of Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province(SZDKF-201903)

摘要

以双转子系统为研究对象,综合考虑高低压转子双频不平衡激励、中介轴承间隙以及机动载荷,通过Lagrange方程,建立了水平盘旋机动飞行环境下双转子系统动力学模型,研究了双转子系统的主共振特性,分析了水平盘旋机动载荷对双转子系统主共振特性的影响规律,探讨了机动飞行环境下中介轴承间隙对双转子系统主共振特性的影响规律。研究结果表明,双转子系统存在振动突跳和双稳态等典型的非线性动力学行为,水平盘旋机动载荷增大会对双转子系统产生"刚度增强效应",中介轴承间隙增大会对双转子系统产生"刚度弱化效应"。

本文引用格式

陈毅 , 侯磊 , 林荣洲 , 杨洋 , 陈予恕 . 机动飞行环境下双转子系统主共振特性分析[J]. 航空学报, 2022 , 43(1) : 224841 -224841 . DOI: 10.7527/S1000-6893.2020.24841

Abstract

This paper focuses on the primary resonance analysis of a dual-rotor system considering the two rotor imbalanced excitations with different rotating speeds, the radial clearance of the inter-shaft bearing and the maneuver load. The vibration equations of the dual-rotor in the hover flight environment are formulated using the Lagrange equation. The primary resonance responses are then obtained by numerical methods, followed by the investigation into the primary resonance characteristics under the influence of the maneuver load and the clearance of inter-shaft bearing. The results reveal that the dual-rotor system has some typical nonlinear dynamic behaviors, such as vibration jump and bi-stable phenomenon. The maneuver load exerts a "stiffness enhancement effect" while the inter-shaft bearing clearance a "stiffness weakening effect" on the dual rotor system.

参考文献

[1] 侯磊. 机动飞行环境下转子系统的非线性动力学行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 1-19. HOU L. Research on nonlinear dynamics of rotor systems inmanuevering flight environment[D]. Harbin: Harbin Institute of Technology, 2015: 1-19(in Chinese).
[2] 陈予恕, 张华彪. 航空发动机整机动力学研究进展与展望[J]. 航空学报, 2011, 32(8): 1371-1391. CHEN Y S, ZHANG H B. Review and prospect on the research of dynamics of complete aero-engine systems[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1371-1391(in Chinese).
[3] 王杰, 左彦飞, 江志农, 等. 带中介轴承的双转子系统振动耦合作用评估[J]. 航空学报, 2021, 42(6): 224065. WANG J, ZUO Y F, JIANG Z N, et al. Evaluation of vibration coupling effect of dual-rotor system with intershaft bearing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 224065(in Chinese).
[4] 张宏献, 李学军, 蒋玲莉, 等. 航空发动机双转子系统不对中研究进展[J]. 航空学报, 2019, 40(6): 022717. ZHANG H X, LI X J, JIANG L L, et al. A review of misalignment of aero-engine rotor system[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 022717(in Chinese).
[5] 朱冬磊, 陈国定, 李炎军, 等. 中介轴承环下流道滑油流动及润滑效率分析[J]. 航空学报, 2019, 40(11): 423022. ZHU D L, CHEN G D, LI Y J, et al. Inner ring oil flow and lubrication efficiency analysis of intershaft bearing[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 423022(in Chinese).
[6] 魏海涛, 范晓明. 机动飞行中双转子系统的振动响应分析[C]//中国航空学会第十届航空发动机结构强度与振动会议论文集, 2001: 315-320. WEI H T, FAN X M. The vibration response of the dual-rotor system in maneuver flight[C]//Proceedings of the 10th Conference of China Aviation Society on Structural Strength and Vibration of Aero Engine, 2001: 315-320(in Chinese).
[7] 徐敏, 廖明夫, 刘启洲. 机动飞行条件下双盘悬臂转子的振动特性[J]. 航空动力学报, 2002, 17(1): 105-109. XU M, LIAO M F, LIU Q Z. The vibration performance of the double-disk cantilever rotor in flight mission[J]. Journal of Aerospace Power, 2002, 17(1): 105-109(in Chinese).
[8] 林富生, 孟光. 飞行器机动飞行时发动机转子等变速运动的动力学特性研究[J]. 航空学报, 2002, 23(4): 356-359. LIN F S, MENG G. Dynamics of a maneuvering rotor in constant acceleration and deceleration[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(4): 356-359(in Chinese).
[9] 林富生, 孟光. 飞行器机动飞行时等速发动机转子的动力学特性研究[J]. 中国机械工程, 2003, 14(19):1634-1637. LIN F S, MENG G. Dynamic characteristics of maneuvering rotor in steady state motion[J]. China Mechanical Engineering, 2003, 14(19):1634-1637(in Chinese).
[10] 祝长生, 陈拥军. 机动飞行时发动机转子系统动力学统一模型[J]. 航空动力学报, 2009, 24(2): 371-377. ZHU C S, CHEN Y J. General dynamic model of aeroengine’s rotor system during maneuvering flight[J]. Journal of Aerospace Power, 2009, 24(2): 371-377(in Chinese).
[11] 祝长生, 陈拥军. 机动飞行时航空发动机转子系统的振动特性[J]. 航空学报, 2006, 27(5): 835-841. ZHU C S, CHEN Y J. Vibration characteristics of aeroengine’s rotor system during maneuvering flight[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5): 835-841(in Chinese).
[12] YANG Y F, REN X M, QIN W Y, et al. Analysis on the nonlinear response of cracked rotor in hover flight[J]. Nonlinear Dynamics, 2010, 61(1-2): 183-192.
[13] 侯磊, 陈予恕. 常数机动载荷对航空发动机转子系统振动特性的影响[J]. 航空动力学报, 2013, 28(12): 2790-2796. HOU L, CHEN Y S. Effect of constant maneuver load on vibration characteristics of aero-engine’s rotor system[J]. Journal of Aerospace Power, 2013, 28(12): 2790-2796(in Chinese).
[14] HOU L, CHEN Y S. Bifurcation analysis of aero-engine’s rotor system under constant maneuver load[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1417-1426.
[15] HOU L, CHEN Y S. Super-harmonic responsesanalysis for a cracked rotor system considering inertial excitation[J]. Science China Technological Sciences, 2015, 58(11): 1924-1934.
[16] HOU L, CHEN Y S, FU Y Q, et al. Nonlinear response and bifurcation analysis of a Duffing type rotor model under sine maneuver load[J]. International Journal of Non-Linear Mechanics, 2016, 78: 133-141.
[17] HOU L, CHEN H Z, CHEN Y S, et al. Bifurcation and stability analysis of a nonlinear rotor system subjected to constant excitation and rub-impact[J]. Mechanical Systems and Signal Processing, 2019, 125: 65-78.
[18] 张俊红, 马梁, 鲁鑫, 等. 机动飞行下挤压油膜阻尼器对碰摩故障转子系统的影响[J]. 西安交通大学学报, 2015, 49(11): 62-70, 141. ZHANG J H, MA L, LU X, et al. Effect of squeeze film damper on rotor system with rub-impact fault under maneuvering flight conditions[J]. Journal of Xi’an Jiaotong University, 2015, 49(11): 62-70, 141(in Chinese).
[19] 李杰, 曹树谦, 郭虎伦, 等. 机动飞行条件下双转子系统动力学建模与响应分析[J]. 航空动力学报, 2017, 32(4): 835-849. LI J, CAO S Q, GUO H L, et al. Modeling and response analysis of dual-rotor system under maneuvering flight[J]. Journal of Aerospace Power, 2017, 32(4): 835-849(in Chinese).
[20] 孙赵宁, 李小彭, 李木岩, 等. 水平盘旋转子参数对滚动轴承系统非线性振动影响[J]. 东北大学学报(自然科学版), 2018, 39(9): 1266-1271. SUN Z N, LI X P, LI M Y, et al. Effect of hovering state rotor parameters on the nonlinear vibration of the rolling bearing system[J]. Journal of Northeastern University(Natural Science), 2018, 39(9): 1266-1271(in Chinese).
[21] HAN B B, DING Q. Forced responses analysis of a rotor system with squeeze film damper during flight maneuvers using finite element method[J]. Mechanism and Machine Theory, 2018, 122: 233-251.
[22] 秦海勤, 王昊, 徐可君, 等. 俯冲拉起飞行条件下航空发动机整机动力学特性分析[J]. 海军航空工程学院学报, 2018, 33(3): 253-262. QIN H Q, WANG H, XU K J, et al. Dynamic characteristics of aero-engine under the condition of subduction and pull up flight[J]. Journal of Naval Aeronautical and Astronautical University, 2018, 33(3): 253-262(in Chinese).
[23] 李小彭, 陈仁桢, 尚东阳, 等. 变刚度轴承-碰摩转子机动飞行动力学响应[J]. 哈尔滨工业大学学报, 2020, 52(1): 1-7. LI X P, CHEN R Z, SHANG D Y, et al. Dynamic response of maneuvering flight friction rotor with variable stiffness bearing[J]. Journal of Harbin Institute of Technology, 2020, 52(1): 1-7(in Chinese).
[24] GAO T, CAO S Q, SUN Y T. Nonlinear dynamic behavior of a flexible asymmetric aero-engine rotor system in maneuvering flight[J]. Chinese Journal of Aeronautics, 2020, 33(10): 2633-2648.
[25] GAO P, HOU L, YANG R, et al. Local defect modelling and nonlinear dynamic analysis for the inter-shaft bearing in a dual-rotor system[J]. Applied Mathematical Modelling, 2019, 68: 29-47.
[26] 高朋, 侯磊, 陈予恕. 双转子-中介轴承系统非线性振动特性[J]. 振动与冲击, 2019, 38(15): 1-10. GAO P, HOU L, CHEN Y S. Nonlinear vibration characteristics of a dual-rotor system with inter-shaft bearing[J]. Journal of Vibration and Shock, 2019, 38(15): 1-10(in Chinese).
[27] JIN Y L, LU Z Y, YANG R, et al. A newnonlinear force model to replace the Hertzian contact model in a rigid-rotor ball bearing system[J]. Applied Mathematics and Mechanics, 2018, 39(3): 365-378.
文章导航

/