A new concept named two-dimensional fuel pump with balanced inertia force balanced is proposed. The pump integrates the flow distribution mechanism on the piston and the piston ring, eliminating the independent flow distribution mechanism of the traditional piston pump, and simplifying the structure of the fuel pump. The axial reciprocating movement of the piston and the piston ring in the opposite direction increases the discharge stroke of the pump without changing the volume, and further improves the power density ratio of the fuel pump. The guide surface of the fuel pump adopts equal acceleration and deceleration curved surfaces, and uses the balancing group to perform reciprocating motion with the same acceleration and opposite direction as that of the driving group to balance the inertial force generated by the driving group at high speed, providing a kind of possibility of high-speed fuel pump. Based on the principle of the pump, the effects of internal leakage, external leakage, and oil compressibility that cause volume loss are analyzed. AMESIM is used to establish a simulation model of the pump for theoretical analysis and comparison with the experimental results for verification. The experiment shows that when the load pressure is 1 MPa, the speed is increased from 1 000 r/min to 7 000 r/min, the volumetric efficiency is increased from 91.6% to 97.8%, and the theoretical deviation is about 3%; when the speed is 2 000 r/min, the load pressure increases from 1 MPa to 6 MPa, the volumetric efficiency decreases from 94.6% to 87.5%, and the theoretical deviation is around 5%. Correctness of the theoretical analysis is thus verified.
[1] 李玉龙,孙付春. 基于离心作用的齿轮泵容积效率和困油现象分析[J]. 农业工程学报, 2011, 27(3): 147-151. LI Y L, SUN F C. Theoretical analysis of volumetric efficiency and phenomenon of trapped oil under centrifugation in external spur-gear pump[J]. Transactions of the CSAE, 2011, 27(3): 147-151(in Chinese).
[2] 钱一凡. 面向航空电动燃油泵的齿轮泵研究[D]. 南京: 南京航空航天大学, 2016: 79. QIAN Y F. Research on gear pump for aviation electric fuel pump[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 79(in Chinese).
[3] 杨华勇,马吉恩,徐兵. 轴向柱塞泵流体噪声的研究现状[J]. 机械工程学报, 2009, 45(8): 71-79. YANG H Y, MA J E, XU B. Research status of axial piston pump fluid-borne noise[J]. Journal of Mechanical Engineering, 2009, 45(8): 71-79(in Chinese).
[4] 马吉恩. 轴向柱塞泵流量脉动及配流盘优化设计研究[D]. 杭州: 浙江大学, 2009: 32-34. MA J E. Study on flow ripple and valve plate optimization on axial piston pump[D]. Hangzhou: Zhejiang University, 2009: 32-34(in Chinese).
[5] 孙毅,姜继海,刘成强. 剩余压紧力条件下滑靴副的油膜特性及功耗[J]. 华南理工大学学报(自然科学版), 2011, 39(1): 111-116. SUN Y, JIANG J H, LIU C Q. Oil film characteristics and power consumption of slipper pair under redundant pressing force[J]. Journal of South China University of Technology (Nature Science and Technology), 2011, 39(1): 111-116(in Chinese).
[6] LI F Y, WANG D Y, LV Q B, et al. Prediction on the lubrication and leakage performance of the piston-cylinder interface for axial piston pumps[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(16): 5887-5896.
[7] 李晶,吴双伟. 轴向柱塞泵配流副楔形油膜温度特性[J]. 中国工程机械学报, 2019, 17(1): 8-14. LI J, WU S W. Temperature characteristics of plane port pair of axial piston pump[J]. Chinese Journal of Construction Machinery, 2019, 17(1): 8-14(in Chinese).
[8] MANRING N D, MEHTA V S, NELSON B E, et al. Increasing the power density for axial-piston swash-plate type hydrostatic machines[J]. Journal of Mechanical Design, 2013, 135(7):0710027.
[9] 李迎兵,徐兵. 轴向柱塞泵滑靴副楔形油膜特性分析[J]. 液压与气动, 2010(9): 87-91. LI Y B, XU B. Axial piston pump slipper pads dynamic characteristics of wedge oil film[J]. Chinese Hydraulics & Pneumatics, 2010(9): 87-91(in Chinese).
[10] 林硕,苑士华,刘洪. 考虑油膜非均匀性的滑靴润滑特性研究[J]. 北京理工大学学报, 2014, 34(4): 358-362. LIN S, YUAN S H, LIU H. Analysis on lubrication characteristics of slipper bearing considering un-uniform gap[J]. Transactions of Beijing Institute of Technology, 2014, 34(4): 358-362(in Chinese).
[11] YE S G, ZHANG J H, XU B. Noise reduction of an axial piston pump by valve plate optimization[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 57.
[12] 汤何胜,李晶,訚耀保. 轴向柱塞泵滑靴副功率损失特性[J]. 中南大学学报(自然科学版), 2017, 48(2): 361-369. TANG H S, LI J, YIN Y B. Power loss characteristics of slipper/swash plate pair in axial piston pump[J]. Journal of Central South University (Nature Science and Technology), 2017, 48(2): 361-369(in Chinese).
[13] 汤何胜,訚耀保,李晶. 轴向柱塞泵滑靴副间隙泄漏及摩擦转矩特性[J]. 华南理工大学学报(自然科学版), 2014, 42(7): 74-79. TANG H S, YIN Y B, LI J. Characteristics of clearance leakage and friction torque of slipper pair in axial piston pump[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(7): 74-79(in Chinese).
[14] 王彬,周华,叶志锋. 燃油柱塞泵配流机构泄漏模型[J]. 南京航空航天大学学报, 2011, 43(2): 172-177. WANG B, ZHOU H, YE Z F. Leakage model of distributing mechanism in fuel piston pump[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(2): 172-177(in Chinese).
[15] SHI G L, WANG H J. Thermal-hydraulic model for axial piston pump with leakage and friction and its application[J]. Industrial Lubrication and Tribology, 2019, 71(6): 810-818.
[16] 焦龙飞,谷立臣,许睿,等. 油液压缩性影响柱塞泵容积效率的机理分析[J]. 机械科学与技术, 2017, 36(5): 704-710. JIAO L F, GU L C, XU R, et al. Effects of fluid compressibility on piston pump volumetric efficiency[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(5): 704-710(in Chinese).
[17] 高彦军,谷立臣,焦龙飞. 油液特性对柱塞泵流量脉动影响的仿真分析[J]. 中国机械工程, 2017, 28(11): 1333-1338. GAO Y J, GU L C, JIAO L F. Effects of oil properties on flow pulsation of axial piston pump by simulation analysis[J]. China Mechanical Engineering, 2017, 28(11): 1333-1338(in Chinese).
[18] 欧阳小平,王天照,方旭. 高速航空柱塞泵研究现状[J]. 液压与气动, 2018(2): 1-8. OUYANG X P, WANG T Z, FANG X. Research status of the high speed aircraft piston pump[J]. Chinese Hydraulics & Pneumatics, 2018(2): 1-8(in Chinese).
[19] XU B, CHAO Q, ZHANG J H, et al. Effects of the dimensional and geometrical errors on the cylinder block tilt of a high-speed EHA pump[J]. Meccanica, 2017, 52(10): 2449-2469.
[20] ZHANG J H, CHAO Q, XU B. Analysis of the cylinder block tilting inertia moment and its effect on the performance of high-speed electro-hydrostatic actuator pumps of aircraft[J]. Chinese Journal of Aeronautics, 2018, 31(1): 169-177.
[21] 张鹤然. 高温燃油柱塞泵配流副空化特性分析[D]. 杭州: 浙江大学, 2019: 33-34. ZHANG H R. Cavitation analysis of the valve plate pair of the high-temperature fuel piston pump[D]. Hangzhou: Zhejiang University, 2019: 33-34(in Chinese).
[22] JIN D C, RUAN J, LI S, et al. Modelling and validation of a roller-cam rail mechanism used in a 2D piston pump[J]. Journal of Zhejiang University-SCIENCE A, 2019, 20(3):201-217.
[23] 金丁灿,阮健. 二维燃油泵的设计与研究[J]. 航空学报, 2019, 40(5): 422730. JING D C, RUAN J. Design and research of two-dimensional fuel pump[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 422730(in Chinese).
[24] 盛敬超. 液压流体力学[M]. 北京: 机械工业出版社, 1980: 200-207. SHENG J C. Hydraulic fluid mechanics[M]. Beijing: China Machine Press, 1980: 200-207(in Chinese).
[25] 钱家圆,申屠胜男,阮健. 二维活塞航空燃油泵容积效率分析[J]. 航空学报, 2020,41(4): 423267. QIAN J Y, SHENTU S N, RUAN J. Volumetric efficiency analysis of two-dimensional piston aviation fuel pump[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 423267(in Chinese).