基于多边形膜片弹簧与压电致动器复合的一体化主被动Stewart减振系统研究

  • 王敏 ,
  • 吴军卫 ,
  • 蒲华燕 ,
  • 孙翊 ,
  • 彭艳 ,
  • 罗均 ,
  • 谢少荣 ,
  • 丁基恒
展开
  • 1. 上海大学
    2. 重庆大学 机械传动国家重点实验室

收稿日期: 2020-07-16

  修回日期: 2020-12-01

  网络出版日期: 2020-12-03

基金资助

国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金;上海扬帆计划

An integrated Active and passive Stewart vibration damping system based on polygonal Diaphragm spring and piezoelectric actuator

  • WANG Min ,
  • WU Jun-Wei ,
  • PU Hua-Yan ,
  • SUN Yi ,
  • PENG Yan ,
  • LUO Jun ,
  • XIE Shao-Rong ,
  • DING Ji-Heng
Expand

Received date: 2020-07-16

  Revised date: 2020-12-01

  Online published: 2020-12-03

摘要

随着遥感卫星光学成像设备等精度的不断提升,其对振动环境的要求也在不断越高,简单的线性被动Stewart平台已经无法满足苛刻使用要求。本文提出了一种新型基于多边形膜片弹簧与压电致动器复合的一体化主被动Stewart减振平台,其单自由度元件主要由多边形膜片弹簧、压电致动器、力传感器以及柔性铰链组成。相较于传统线性隔振器存在的高静刚度和低动刚度之间的固有结构矛盾,本文所提出的多边形膜片弹簧作为隔振器的关键原件,兼具高静-低动(HSLD)特性,能够使隔振系统同时具备较高的静态刚度进行静态承载以及较低的动刚度进行动态减振。为了降低被动隔振系统中存在的共振峰幅值,本文在被动膜片弹簧元件的基础上串联一个压电致动器与力传感器组成的主动控制元件进行主动振动控制。仿真结果表明,采用比例积分力(PIF)反馈控制算法的主动控制系统,在频域上不仅可以通过积分力环节搭建出天棚阻尼的效果来降低共振峰峰值(11.19dB),而且其比例-力环节可等效为增大了质量矩阵项,能够有效降低减振系统的固有频率(20.9Hz),拓宽其减振带宽,并同时能维持高频段的高衰减性,在时域上也能够将系统的加速度振动幅值从±0.6g降低至±0.07g,振动衰减达88%。

本文引用格式

王敏 , 吴军卫 , 蒲华燕 , 孙翊 , 彭艳 , 罗均 , 谢少荣 , 丁基恒 . 基于多边形膜片弹簧与压电致动器复合的一体化主被动Stewart减振系统研究[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2020.24532

Abstract

With the continuous improvement of the accuracy of remote sensing satellite optical imaging equipment, its re-quirements on vibration environment are also getting higher and higher, and the simple linear passive Stewart plat-form can no longer meet the stringent requirements for use. A new integrated active and passive Stewart vibration damping platform based on the composite of polygonal diaphragm spring and piezoelectric actuator is presented. Its vibration isolation leg is mainly composed of polygonal diaphragm spring, piezoelectric actuator, force sensor and flexure hinge. There is an inherent contradiction between the high static stiffness and the low dynamic stiffness in the traditional linear vibration isolator. As the key component of the vibration isolator, the polygonal diaphragm spring proposed in this paper has the characteristics of high-static-low-dynamic (HSLD). It can make the vibration isolation system have high static stiffness for static loading and low dynamic stiffness for dynamic vibration reduc-tion. In order to reduce the amplitude of the resonance peak in the passive vibration isolation system, an active con-trol element consisting of a piezoelectric actuator and a force sensor is connected in series on the basis of the pas-sive diaphragm spring element to control the active vibration. The simulation results show that the active control system using the PIF feedback control algorithm can not only reduce the peak value of resonance (11.9 dB) by building the effect of ceiling damping through the integral force link in frequency domain, but also increase the mass matrix term, effectively reduce the natural frequency (20.9Hz) of the damping system and broaden its damp-ing effect. At the same time, it can maintain the high attenuation of the high frequency band. In the time domain, it can also reduce the acceleration vibration amplitude of the system from ± 0.6g to ± 0.07g, and the vibration attenu-ation reaches 88%.

参考文献

[1]吴伟光, 马履中, 杨启志.车辆并联机构座椅三维减振研究[J].农业机械学报, 2011, 042(006):23-27
[2]叶鹏达, 尤晶晶, 沈惠平, 等.支链台体型衍生构型位置正解半解析算法[J].农业机械学报, 2019, 50(04):400-407
[3]Zhou Jiaxi, Wang Kai, Xu Daolin, et al.A six-DOF vi-bration isolation platform supported by a hexapod of quasi-zero-stiffness struts[J]. journal of vibration & acoustics, 2017, 139(3):-
[4]吕俊超, 陈照波, 焦映厚, 等.基于音圈电机的Stewart主动隔振平台设计[J].机械设计与制造, 2013, 02:70-73
[5]Preumont A, Horodinca M, Romanescu I, et al.A six-axis single-stage active vibration isolator based on Stew-art platform[J].Journal of Sound & Vibration, 2007, 300(3-5):644-661
[6]李伟鹏.空间高稳定精密跟瞄Hexapod平台指向与振动控制研究[D]. 北京: 北京航空航天大学, 2008
[7]Hanieh A A B.Active isolation and damping of vibrations via Stewart platform[J]. 2003.
[8]杨宇, 郑淑涛, 韩俊伟.基于动力学的Stewart平台振动控制策略研究[J]. 农业机械学报, 2010(06):26-30.
[9]李永泉, 刘天旭, 王立捷.平台多能域系统动力学全解建模与实验[J].农业机械学报, 2018, v.49(04):411-
[10]Hiller M W, M.D. Bryant,Umegaki JAttenuation and transformation of vibration through active control of magnetostrictive terfenol[J].Journal of Sound & Vibra-tion, 1989, 134(3):507-519
[11]Le T D, Ahn K K.A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat[J].Journal of Sound & Vibra-tion, 2011, 330(26):6311-6335
[12]Zhang J Z, Li D, Chen M J, et al.An Ultra-Low Fre-quency Parallel Connection Nonlinear Isolator for Preci-sion Instruments[J]. Key Engineering Materials, 2004, 257-258:231-238.
[13]Kovacic I, Brennan M J, Waters T P.A study of a nonlin-ear vibration isolator with a quasi-zero stiffness charac-teristic[J].Journal of Sound and Vibration, 2008, 315(3):700-711
[14]Carrella A, Brennan M J, Kovacic I, et al.On the force transmissibility of a vibration isolator with quasi-zero-stiffness[J].Journal of Sound and Vibration, 2009, 322(4-5):707-717
[15]Carrella A, Brennan M J, Waters T P.Static analysis of a passive vibration isolator with quasi-zero-stiffness char-acteristic[J].Journal of Sound and Vibration, 2007, 301(3-5):678-689
[16]Liu X, Huang X, Hua H.On the characteristics of a qua-si-zero stiffness isolator using Euler buckled beam as negative stiffness corrector[J].Journal of Sound and Vi-bration, 2013, 332(14):3359-3376
[17]Zheng Y, Li Q, Yan B, et al.A Stewart isolator with high-static-low-dynamic stiffness struts based on negative stiffness magnetic springs[J]. Journal of Sound and Vi-bration, 2018, 422:390-408.
[18]Zheng Y, Zhang X, Luo Y, et al.Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness[J]. Mechanical Systems and Signal Processing, 2018, 100:135-151.
[19]Zheng Y, Zhang X, Luo Y, et al.Design and experiment of a high-static–low-dynamic stiffness isolator using a negative stiffness magnetic spring[J]. Journal of Sound and Vibration, 2016, 360:31-52.
[20]Wu W, Chen X, Shan Y.Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness[J].Journal of Sound and Vibration, 2014, 333(13):2958-2970
[21]Li Q, Zhu Y, Xu D, et al.A negative stiffness vibration isolator using magnetic spring combined with rubber membrane[J].Journal of Mechanical Science and Tech-nology, 2013, 27(3):813-824
[22]Shan Y, Wu W, Chen X.Design of a Miniaturized Pneumatic Vibration Isolator With High-Static-Low-Dynamic Stiffness[J].Journal of Vibration and Acous-tics, 2015, 137(4):045001-
[23]Xu D, Yu Q, Zhou J, et al.Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic[J].Journal of Sound and Vibration, 2013, 332(14):3377-3389
[24]Geng Z J, Haynes L S.Six degree-of-freedom active vibration control using the Stewart platforms[J].IEEE Transactions on Control Systems Technology, 1994, 2(1):45-53
[25]Tu Yongqiang, Yang Gongliu, Cai Qingzhon, et al.Op-timal design of SINS' s Stewart platform bumper for res-toration accuracy based on genetic algorithm[J]. Mecha-nism and Machine Theory, 2018, 124:42-54.
[26]Shi X, Zhu S.Magnetic negative stiffness dampers[J].Smart Materials & Structures, 2015, 24(7):072002-
[27]Zhou J, Wang K, Xu D, et al.A six-DOF vibration isola-tion platform supported by a hexapod of quasi-zero-stiffness struts[J]. Journal of Vibration & Acoustics, 2017, 139(3).
[28]Virgin L N, Davis R B.Vibration isolation using buckled struts[J].Journal of Sound and Vibration, 2003, 260(5):965-973
文章导航

/